A new individual-based forest model for the species beech (Fagus sylvatica L.) was developed and implemented. The model called BEEch Plasticity (BEEP) describes tree crown plasticity phenomenologically and is able
to model aboveground competition for PAR on a process basis. The current debate about the tree interactions in near-natural beech forests and their role in emergent forest structures and dynamics led to the research
questions if (1) observed patterns can be modeled and reproduced by only describing the aboveground tree interactions, (2) what effects tree crown plasticity has on the structure and dynamics of near-natural beech forests, and (3) what effects selective thinning has on the structure and dynamics of near-natural beech forests. The BEEP model was developed, parameterized, calibrated, and validated according to data from the unmanaged forest `Schattiner Zuschlag' near Lübeck, North-Germany, while additional data from the sites Langula (Thuringia) and Fabrikschleichach (Bavaria) was used for model parameterization and calibration. Three simulation experiments were conducted. In the first experiment, the BEEP model was run 10 times for 2000 time steps with plastic tree crowns and the emergent forest structure was analyzed using structural indices. In the second experiment, the BEEP model was run again 10 times for 2000 time steps but with a modified crown model that only uses rotation-symmetric tree crowns. In the third experiment, the BEEP model was enhanced with a selective thinning procedure that uses target trees with specific diameter and heights as thinning objects. Forest structure was analyzed through the application of structural indices that capture different aspects of forest structure and by means of characterization of forest development phases. Analysis was accomplished only for the time steps 1000-2000 in order to allow transient oscillation in forest dynamics to develop. The results showed that the focus on aboveground competition and tree interactions sufficed to model beech forests and reproduced a wide range of patterns observed in near-natural and old-growth beech forest. In particular, the BEEP model was able to simulate a multi-layered forest structure with a mosaic structure of several developmental stages on a relatively small area of 0.5 ha. The simulated forest had wide diameter and age distributions. The diameter distribution was reversed-J-shaped. The age range of canopy trees exceeded 200 years. The comparison between simulations with plastic and rotation-symmetric tree crowns revealed that crown plasticity reduced tree competition for crown space and PAR and enhanced the forest structure and heterogeneity in the long term by allowing more tree cohorts of dfferent developmental stages to coexist. This supports the notion that crown plasticity drives beech forest dynamics in near-natural forests. The comparison between simulations with plastic tree crowns and with additional selective thinning showed that thinning does not affect the forest structural heterogeneity and reduces tree crown competition, while spatial patterns of tree positions remained unaltered. However, crown centroids were more regularly distributed. Model assumptions in the submodel routines, especially in the radiation and mortality submodel, question the reliability of the model results, because of the high sensitivity that these routines evoke on model outcomes. Therefore, revised versions of the submodels and a thoroughly validated crown growth model, may produce different results. Thus, the results presented in this study should be treated with care and cannot be used for generalizations about tree interactions in near-natural beech forests.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38709 |
Date | 12 March 2020 |
Creators | Engel, Markus |
Contributors | Berger, Uta, Oheimb, Goddert von, Kurth, Winfried, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds