L’émergence de nouveaux matériaux structurés à l’échelle nanométrique, aux propriétés contrôlées, a ouvert de nouvelles perspectives vis-à-vis des matériaux qui nous entourent. C’est notamment le cas des métaux et de leurs alliages et il est crucial d’établir le lien entre leurs propriétés structurales et leurs propriétés chimique et physique pour en permettre une utilisation optimale. Cette thèse s’inscrit dans ce contexte et porte sur la synthèse et la caractérisation en microscopie électronique en transmission de nanoparticules d’alliage bimétallique Au-Cu. En s’appuyant sur le diagramme de phase décrit à l’échelle macroscopique, nous nous sommes particulièrement intéressés aux nanoparticules de compositions nominales Au3Cu, AuCu et AuCu3. Le premier axe de ce travail consiste en l’élaboration de nanoparticules d’alliage Au-Cu. Deux voies de synthèse sont explorées : la voie chimique reposant sur le procédé polyol et la voie physique par ablation par laser pulsé. Le premier mode d’élaboration permet l’obtention de nanoparticules parfaitement cubiques dont la composition est systématiquement riche en Au. Les nanoparticules produites par voie physique présentent en revanche une composition maitrisée et modifiable. D’un point de vue structural, un recuit de ces dernières particules mène à leur mise en ordre chimique et à l’observation de structures L10 et L12. Cependant, nous montrons que cette transition de phase est bloquée dans les nanostructures présentant des défauts structuraux. Enfin, l’évolution du paramètre de maille des nanoparticules synthétisées selon ces deux voies de synthèse, en fonction de leur composition, a été établie et suit exactement la loi de Vegard décrite pour le matériau massif.Dans un second temps, nous avons observé des nanoparticules obtenues par voie physique en microscopie électronique en transmission environnementale, c’est-à-dire dans des conditions proches des environnements d’utilisation habituellement appliqués en catalyse. Les expériences menées en température révèlent que le mécanisme de dissolution de nanoparticules d’Au et d’alliage Au-Cu portées à haute température se fait en deux étapes : il y a fusion des nanoparticules suivi de leur évaporation pour des tailles de nanoparticules centrées autour de 10 nm. Les expériences réalisées en couplant le chauffage des nanoparticules au passage d’un gaz (H2 ou O2), en flux et dans des conditions de pression bien supérieures à celles accessibles jusqu’à maintenant, ont permis d’étudier leur comportement thermodynamique en condition oxydantes et réductrices. Nous avons notamment montré que des cycles d’oxydo-réduction de nanoparticules de taille moyenne supérieure à 20 nm conduisent à un effet Kirkendall menant, de manière réversible, à la formation de nanoparticules creuses (doughnut). Cette thèse interdisciplinaire constitue travail pionnier dans la compréhension du système d’alliage bimétallique Au-Cu à l’échelle nanoscopique / The emergence of new materials, structured at the nanoscale, with controlled properties, has opened new prospects regarding materials around us. In particular for metals and alloys, it seems crucial to connect their structural properties to their chemical and physical properties in order to optimise their use.Within this context, this thesis is focused on the synthesis and the characterisation of Au-Cu bimetallic alloy nanoparticles by transmission electron microscopy. On the basis of the bulk phase diagram, we especially studied particles with nominal compositions Au3Cu, AuCu et AuCu3.The first part of this work is dedicated to the synthesis of nanoparticles in two different ways. The chemical way is based on the polyol process and leads to nanoparticles exhibiting a cubic shape, and a systematically rich Au content. On the other hand, nanoparticles obtained by Pulsed Laser Deposition (PLD), a physical method of synthesis, display a well-controlled and tuneable composition. From a structural point of view, the annealing of the particles leads to chemical order and the stabilisation of L10 and L12 structures. However, we reveal that this phase transition is blocked in nanostructures with crystal defects. Moreover, we establish the evolution of the lattice parameter of the particles as a function of the composition and we demonstrate that, as in the bulk case, it is in agreement with Vegard’s law.In the second part, the nanoparticles synthesised via the physical method are studied using environmental transmission electron microscopy, i.e. in conditions close to those usually applied in catalytic reactors. Experiments performed at high temperature highlight that the dissolution of Au and Au-Cu nanoparticles occurs in a two-step process: fusion occurs first and is followed by evaporation for nanoparticles with a mean diameter of 10 nm.Coupling heating with gas flow (H2 or O2) in higher pressure condition than those usually reached allows us to study the thermodynamic behaviour of the nanoparticles in oxidative or reductive conditions. Most Notably, we show that oxidation-reduction cycles performed on nanoparticles with a diameter larger than 20 nm leads to a Kirkendall effect and the reversible formation of hollow particles (doughnuts).This cross-disciplinary thesis is a pioneering work towards understanding the bimetallic Au-Cu alloy system at atomic scale
Identifer | oai:union.ndltd.org:theses.fr/2017USPCC122 |
Date | 13 February 2017 |
Creators | Prunier, Hélène |
Contributors | Sorbonne Paris Cité, Alloyeau, Damien, Ricolleau, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0023 seconds