Return to search

Theoretical Routes for c-BN Thin Film Growth

Cubic boron nitride (c-BN) has been in focus for several years due to its interesting properties. The possibility for large area chemical vapor deposition (CVD) is a requirement for the realization of these different properties in various applications. Unfortunately, there are at present severe problems in the CVD growth of c-BN. The purpose with this research project has been to theoretically investigate, using density functional theory (DFT) calculations, the possibility for a layer-by-layer CVD growth of c-BN.  The results, in addition with experimental work by Zhang et al.57,  indicate that plasma-enhanced atomic layer deposition (PEALD), using a BF3-H2-NH3-F2 pulse cycle and a diamond substrate, is a promising method for deposition of c-BN films. The gaseous species will decompose in the plasma and form BFx, H, NHx, and F species (x = 0, 1, 2, 3). The H and F radicals will uphold the cubic structure by completely hydrogenate, or fluorinate, the growing surface. Surface radical sites will appear during the growth process as a result of atomic H, or F, abstraction reactions. However, introduction of energy (e.g., ionic bombardment) is probably necessary to promote removal of H from the surface. The addition of NHx growth species (x = 0, 1, 2) to the B radical sites, and BFx growth species (x = 0, 1, 2) to N radical sites, will then result in a continuous growth of c-BN.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-204234
Date January 2013
CreatorsKarlsson, Johan
PublisherUppsala universitet, Oorganisk kemi, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1055

Page generated in 0.0124 seconds