Le but de cette thèse est de mettre en relation les propriétés structurale, dynamique et fonctionnelle de la forme humaine d’une nouvelle protéine découverte dans le cerveau des vertébrés en 2000 : la Neuroglobine. Dans un premier temps, j’ai réalisé une étude théorique dans laquelle un mécanisme à deux voies menant à la forme pentacoordinée avec cystéines oxydées a été mis en avant. A travers ce mécanisme, un conformère de la Neuroglobine au sein duquel le groupe prosthétique hème a basculé au cœur de la structure protéique a été déterminé. A partir des structures de ce mécanisme, une étude sur la diffusion de petits ligands au sein des cavités internes de la protéine à l’aide de la méthode de métadynamique a mis en évidence que la formation du pont disufure intramoléculaire favorisait la poche de ligation. De plus un certain nombre de voies de sortie pour les ligands a pu être obtenu. Pour compléter ce premier aspect de la thèse, une étude des propriétés mécaniques, communes avec les autres globines, a montré l’importance de quatre résidus centraux, dit mécaniquement sensibles, qui régulent les canaux d’accès aux différentes poches internes de la protéine, appelé phénomène de respiration. Dans un second temps, je me suis intéressé à l’interaction de la Neuroglobine avec un petit ligand via une étude expérimentale par ITC. La première conclusion importante est que la cinétique de ligation est plus importante lorsque le pont disulfure est formé. De plus j’ai observé une diminution de la cinétique lors du passage Wild Type vers C120S puis réaugmentation de la cinétique lors du passage C120S vers C46G/C55S/C120. Afin de comprendre ce phénomène, une simulation de la Neuroglobine triplement mutée a été réalisée au cours de laquelle un réseau de deux liaisons hydrogènes a été mis en avant. Ce réseau change considérablement les voies d’entrée/sortie pour les ligands. Ainsi la mutation 120 ferme une/ou plusieurs voies de sortie alors que la mutation 46 ouvre la voie naturelle des globines. Le changement observé étant important, une étude par RMN de Ngb TM et WT cystéines réduites a montré qu’il y avait une différence de structure entre ces formes pas seulement au niveau des points de mutation mais sur l’ensemble de la structure. Ces nouveaux résultats mettent ainsi en évidence le rôle important des trois cystéines chez la Neuroglobine humaine. / In this PhD work, I tried to link together the different structural, dynamic and fonctional properties of a new human protein discovered in the mamals brain in 2000: the Neuroglobin. First of all, I established a new two ways mecanism in order to get the pentacoodinated oxydized cysteins state using theoritical method. One of this mecanism’s conformer shows an important heme sliding inside of the proteic structure. Furthermore with help of metadynamic method, I studied the small ligand diffusion and migration in the internal cavity network. I showed the higher ligand affinity when the disulfide bridge is bond and we proposed an important number of exit pathways. Then we developed a method to understand the mechanical properties of the globins and we found four residues mechanically sensitive which form together a control access pathway between internal cavities, called breath phenomenon. Secondly I used ITC method in order to characterize the interaction between the Neuroglobin and a small ligand. From this experiment we highlighted that the kinetic ligation is faster when the disulfide bridge is formed. Then I noticed a relative decrease of the velocity when the mutation C120S is operated followed by a relative increase of the velocity for the triple mutation C46G/C55S/C120 compared to the Wild Type data. To understand these results, I performed a molecular simulation of the triple mutation Neuroglobin form. During this trajectory, I discovered a structure with a two hydrogen bonds network, which significantly changes the ligand entry/exit pathways. The 120 mutation closes one/several exit pathways while the 46 mutation opens the natural globin exit pathway. Because of the considerable structural change observed in the triple mutation Neuroglobin form, I decided to produce NMR results. These last points reveal a relative structure difference between the Wild Type oxidized cysteins form and the triple mutation form not only on the mutation points but also on the global structure. All these new results highlight the essential role of the three cysteins in the human Neuroglobin.
Identifer | oai:union.ndltd.org:theses.fr/2011PA112192 |
Date | 07 October 2011 |
Creators | Bocahut, Anthony |
Contributors | Paris 11, Sebban, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0016 seconds