Return to search

Contrôle des écoulements par modèles d'ordre réduit, en vue de l'application à la ventilation naturelle des bâtiments / Flow control using reduced models, in order to its application in natural ventilation of buildings

Afin d’élaborer des stratégies de contrôle des écoulements en temps réel, il est nécessaire d’avoir recours à des modèles d’ordre réduit (ROMs), car la résolution des équations complètes est trop coûteuse en temps de calcul (des jours, des semaines) et en espace mémoire. Dans cette thèse, les modèles réduits ont été construits avec la méthode POD (Proper Orthogonal Decomposition). Une méthode de projection basée sur la minimisation des résidus, initiée par les travaux de Leblond et al. [134] a été proposée. Dans certaines configurations, la précision des résultats est significativement augmentée, par rapport à une projection de Galerkin classique. Dans un second temps, un algorithme d’optimisation non-linéaire, à direction de descente basée sur la méthode des équations adjointes, a été couplé avec des modèles réduits utilisant des bases POD. Deux méthodes de construction de base POD ont été employées : soit avec un paramètre (un nombre de Reynolds,. . . ), soit avec plusieurs paramètres (plusieurs nombres de Reynolds, . . . ). Les ROMs obtenus ont été utilisés pour contrôler la dispersion d’un polluant dans une cavité ventilée puis pour contrôler le champ de température dans une cavité entraînée différentiellement chauffée. Le contrôle est réalisé en temps quasi-réel et les résultats obtenus sont plutôt satisfaisants. Néanmoins, ces méthodes sont encore trop coûteuses en espace mémoire pour être aujourd’hui embarquées dans les boîtiers de contrôle utilisés dans le bâtiment. Une autre stratégie de contrôle, s’appuyant sur les contrôleurs actuels, a ainsi été développée. Celle-ci permet d’obtenir la température (ainsi que la vitesse) dans la zone d’occupation du bâtiment, en utilisant une décomposition des champs par POD et un algorithme d’optimisation de Levenberg-Marquardt. Elle a été validée sur une cavité différentiellement chauffée, puis appliquée sur une cavité ventilée 3D, proche d’un cas réel. / In order to control flows in real-time, it is necessary to resort to reduced-order models (ROMs) because the classical method of simulations is too expensive in CPU time (several days, weeks) and memory storage. In this thesis, the ROMs have been built with the POD (Proper Orthogonal Decomposition) technique. First, a projection method based on the minimization of the equations residuals and established starting from the works of Leblond et al. [134] have been developed. In some cases, the results accuracy is significantly increased. Secondly, a direct descent optimization algorithm based on adjoint-equations has been coupled with POD/ROMs. Two construction methods of POD bases has been employed: either with simulations for only one parameter (one Reynolds number, . . . ), or with simulations for several parameters (several Reynolds numbers,. . . ). The obtained ROMs have been applied in order to control the pollutant dispersion and then to control the temperature field in a lid-driven cavity heated by the left. The control is realized in quasi-real time and the results are rather satisfying. Nevertheless, these methods are still too expensive in memory storage to be embedded in the current controllers. Thus, another control strategy has been proposed, using POD and an optimization algorithm (Levenberg-Marquardt). This one enables to obtain the temperature (and the velocity) in the occupation zone of the building and has been validated on the lid-driven cavity heated by the left and applied on a 3D-ventilated cavity, similar to a real case.

Identiferoai:union.ndltd.org:theses.fr/2013LAROS408
Date08 April 2013
CreatorsTallet, Alexandra
ContributorsLa Rochelle, Allard, Francis, Allery, Cyrille
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0055 seconds