Ces travaux sont dédiés au développement de méthodes numériques à base d'ondelettes pour la résolution d'équations aux dérivées partielles et pour le traitement d'images. La première partie est consacrée à la construction d'une nouvelle méthode couplant ondelettes et domaines fictifs pour la résolution d'équations paraboliques 2D définies sur un domaine quelconque. Une analyse complète de la méthode est fournie; elle montre l'efficacité de cette approche en terme de qualité des résultats (borne d'erreur, raffinement local), d'efficacité numérique (conditonnement, préconditionnement simple) et de flexibilité de l'implémentation (implémentation rapide et efficace). Deux applications numériques à la résolution de l'équation de la chaleur définie sur des domaines non polygonaux ou à frontière mobile (problème de Stefan) sont présentées. La seconde partie est consacrée à la construction d'un nouvel algorithme de compression d'images adapté aux contours. On commence par introduire des analyses multi-échelles 1D du type Harten, dépendant d'une famille de points. Ces analyses conduisent à des décompositions multi-échelles efficaces pour la représentation de signaux discontinus. Cette approche est ensuite généralisée au cas bi-dimensionnel et un algorithme de compression multi-directionnel dépendant des contours de l'image est introduit. Il utilise une carte des contours obtenue préalablement. Plusieurs comparaisons avec d'autres approches sont ensuite présentées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008618 |
Date | 08 December 2004 |
Creators | Baccou, Jean |
Publisher | Université de Provence - Aix-Marseille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds