Return to search

Le morphisme déterminant pour les espaces de modules de groupes p-divisibles

Soit \M un espace de modules de groupes p-divisibles introduit par Rapoport et Zink. Supposons que cet espace \M soit non-ramifié de type EL ou PEL unitaire ou symplectique. Soit \Mrig la fibre générique de Berthelot de \M. C'est un espace rigide analytique au-dessus duquel il existe une tour de revêtements étales finis (\M_K)_K qui classifient les structures de niveau. On définit un morphisme déterminant \det_K de la tour (\M_K)_K vers une tour d'espaces rigides analytiques étales de dimension 0 associée au cocentre du groupe réductif relié à cet espace. C'est un analogue local en des places non-archimédiennes du morphisme déterminant pour les variétés de Shimura défini par Deligne. Comme pour les variétés de Shimura, on montre que les fibres géométriques du morphisme déterminant \det_K sont les composantes connexes géométriques de \M_K. On définit aussi les morphismes puissances extérieures qui généralisent le morphisme déterminant sur la tour d'espaces rigides analytiques associée à un espace de Lubin-Tate.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00594110
Date11 May 2011
CreatorsChen, Miaofen
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds