La plupart des développements qui ont été effectués ces dernières années dans le domaine de la RMN rapide ont permis d’accélérer considérablement l’acquisition des expériences multidimensionnelles. Cependant, dans le cas de l’étude des interactions proton-proton, qui constituent des sondes structurales précieuses des molécules, l’ensemble du processus analytique demeure une tâche difficile et longue pour les chimistes. Une raison est la complexité et la quantité des informations rendues disponibles qui contribue au profil spectral global, même dans le cas de molécules de petites et moyennes tailles. En l’état de l’art actuel, il était difficile d’optimiser simultanément la résolution des spectres de corrélations et la durée d’analyse nécessaires pour les acquérir et les exploiter. Ce projet de thèse avait pour but de développer une approche RMN nouvelle et générale basée sur un encodage spatial fréquentiel de l’échantillon afin de simplifier et d’accélérer l’étude de molécules plus ou moins complexes. L’encodage spatial fréquentiel permet de contrôler sélectivement les évolutions de spins dans des régions localisées de l’échantillon et de les combiner dans des spectres RMN haute résolution dans lesquels le contenu analytique est aisément accessible. Dans une première partie, la théorie de l’encodage spatial en fréquence est présentée. Une méthode de simulation du signal RMN encodé est présentée, puis utilisée pour décrire la localisation du processus d’excitation sélective d’un système de spin modèle, en allant de l’analyse d’une cohérence unique vers la reconstruction du spectre encodé à travers le tube RMN. En parallèle, l’influence du champ magnétique sur la largeur de coupe et de sensibilité de ce type d’expériences est également étudiée grâce à cet outil de simulation. Dans une deuxième partie, deux développements méthodologiques sont présentés. Tout d’abord, l’expérience PCR-COSY donne accès, en un seul spectre, à la mesure totalement éditée et attribuable des couplages scalaires proton-proton pour une molécule donnée. Ensuite, l’expérience push-G-SERF permet de mesurer l’ensemble des couplages impliquant un proton sélectionné à partir d’un spectre présentant des signaux J-résolus dans la dimension indirecte et -résolus dans la dimension directe du spectre. Dans une troisième partie, les expériences basées sur un encodage spatial de l’échantillon sont appliquées à l’analyse conformationnelle d’un saccharide synthétique. Tout d’abord, les avantages et inconvénients de la mise en œuvre des techniques d’encodage spatial en fréquence à très haut champ sont discutés. Enfin, une stratégie d’analyse conformationnelle basée sur la spectroscopie J-éditée est présentée et appliquée avec succès à l’étude de cet oligosaccharide. / Most of the developments that have been made during the last years in the field of fast NMR have allowed for considerably accelerating the acquisition of multidimensional experiments. However, the analysis of proton-proton spin interactions, which are very important structural probes in molecules, still constitutes a tedious and time-consuming analytical process for most of the chemists. One reason is the complexity and the high number of homonuclear couplings that contribute to the overall lineshape in proton spectra, even for small or medium-sized compounds. It is thus nowadays very difficult to optimize both the resolution of correlation spectra, and the experimental time needed to acquire them, using state of the art high resolution methods. This thesis project aimed at developing a novel and general approach based on a spatial frequency encoding of the NMR sample in order to simplify and thus to accelerate the analysis of complex molecular systems. Spatial frequency encoding consists in controlling selectively spin evolutions in localized regions of the sample, and in combining them into high resolution experiments whose analytical content is easily accessible. In a first part, the theory of spatial frequency encoding is presented. A general method for simulating the encoded NMR signal is introduced, and it is applied to describe the localized selective excitation process of a model spin system, from the analysis of a single spin coherence, to the reconstruction of the whole NMR spectrum encoded throughout the sample. The magnetic field dependence of the slice selection process, as well as the overall sensitivity is also addressed through this simulation tool. In a second part, two methodological developments are presented. Firstly, the PCR-COSY experiment gives access, in a single spectrum, to a fully edited and assignable measurement of all the proton-proton scalar couplings in a given molecule. Secondly, the push-G-SERF experiment allows for measuring all the couplings involving a selected proton on correlations showing a J-resolved and a -resolved structure in the indirect and direct domain of the resulting 2D spectrum, respectively. In a third part, high-resolution experiments based on a spatial frequency encoding of the sample are applied to the conformational analysis of a synthetic saccharide. First, advantages and drawbacks of an implementation of spatial frequency encoded techniques at very high field are discussed. Then, a conformational analysis strategy based on J-edited spectroscopy is introduced, and successfully applied to the study of this oligosaccharide.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112106 |
Date | 22 June 2015 |
Creators | Pitoux, Daisy |
Contributors | Paris 11, Merlet, Denis, Giraud, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.003 seconds