Return to search

Probing Early and Late Inflations Beyond Tilted LambdaCDM

The topic of this thesis is about cosmic inflations, including the early-universe inflation that seeds the initial inhomogeneities of our universe, and the late-time cosmic acceleration triggered by dark energy. The two inflationary epochs have now become part of the standard $\Lambda$CDM cosmological model. In the standard paradigm, dark energy is a cosmological constant or vacuum energy, while the early-universe inflation is driven by a slowly rolling scalar field. Currently the minimal $\Lambda$CDM model with six parameters agrees well with cosmological observations.

If the greatest achievement of the last twenty golden years of cosmology is the $\Lambda$CDM model, the theme of future precision cosmology will be to search for deviations from the minimal $\Lambda$CDM paradigm. It is in fact expected that the upcoming breakthroughs of cosmology will be achieved by observing the subdominant anomalies, such as non-Gaussianities in the Cosmic Microwave Background map. The aim of this thesis is then to make theoretical predictions from models beyond $\Lambda$CDM, and confront them with cosmological observations. These models include: 1) a new dark energy parametrization based on quintessence models; 2) reconstructing early-universe inflationary trajectories, going beyond the slow-roll assumption; 3) non-Gaussian curvature fluctuations from preheating after the early-universe inflation; 4) infra-red cascading produced by particle production during inflation; 5) preheating after Modular inflation; 6) decaying cold dark matter. We update the cosmological data sets -- Cosmic Microwave Background, Type Ia supernova, weak gravitational lensing, galaxy power spectra, and Lyman-$\alpha$ forest -- to the most current catalog, and run Monte Carlo Markov Chain calculations to obtain the likelihood of parameters. We also simulate mock data to forecast future observational constraints.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/26193
Date15 February 2011
CreatorsHuang, Zhiqi Jr.
ContributorsBond, J. Richard, Kofman, Lev
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds