abstract: The most important metrics considered for electric vehicles are power density, efficiency, and reliability of the powertrain modules. The powertrain comprises of an Electric Machine (EM), power electronic converters, an Energy Management System (EMS), and an Energy Storage System (ESS). The power electronic converters are used to couple the motor with the battery stack. Including a DC/DC converter in the powertrain module is favored as it adds an additional degree of freedom to achieve flexibility in optimizing the battery module and inverter independently. However, it is essential that the converter is rated for high peak power and can maintain high efficiency while operating over a wide range of load conditions to not compromise on system efficiency. Additionally, the converter must strictly adhere to all automotive standards.
Currently, several hard-switching topologies have been employed such as conventional boost DC/DC, interleaved step-up DC/DC, and full-bridge DC/DC converter. These converters face respective limitations in achieving high step-up conversion ratio, size and weight issues, or high component count. In this work, a bi-directional synchronous boost DC/DC converter with easy interleaving capability is proposed with a novel ZVT mechanism. This converter steps up the EV battery voltage of 200V-300V to a wide range of variable output voltages ranging from 310V-800V. High power density and efficiency are achieved through high switching frequency of 250kHz for each phase with effective frequency doubling through interleaving. Also, use of wide bandgap high voltage SiC switches allows high efficiency operation even at high temperatures.
Comprehensive analysis, design details and extensive simulation results are presented. Incorporating ZVT branch with adaptive time delay results in converter efficiency close to 98%. Experimental results from a 2.5kW hardware prototype validate the performance of the proposed approach. A peak efficiency of 98.17% has been observed in hardware in the boost or motoring mode. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
Identifer | oai:union.ndltd.org:asu.edu/item:50508 |
Date | January 2018 |
Contributors | Mullangi Chenchu, Hemanth (Author), Ayyanar, Raja (Advisor), Qin, Jiangchao (Committee member), Lei, Qin (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 87 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0016 seconds