• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and control of zero-voltage transition three-phase PWM boost rectifier

Ambatipudi, Ravindra 16 June 2009 (has links)
Average and small signal modeling of zero-voltage transition three-phase boost rectifier is performed. The effect of ZVT is introduced in the existing model for the three-phase boost rectifier using the time-averaging equivalent circuit approach. The small signal model is derived from the average model. The small signal characteristics are compared to the corresponding characteristics without ZVT. A model is also developed for the independent analog current controller. The models are experimentally verified. In order to perform in-depth study of control approaches, a switching model is also developed. The models are used to investigate various control approaches. / Master of Science
2

High Frequency Power Converter with ZVT for Variable DC-link in Electric Vehicles

January 2018 (has links)
abstract: The most important metrics considered for electric vehicles are power density, efficiency, and reliability of the powertrain modules. The powertrain comprises of an Electric Machine (EM), power electronic converters, an Energy Management System (EMS), and an Energy Storage System (ESS). The power electronic converters are used to couple the motor with the battery stack. Including a DC/DC converter in the powertrain module is favored as it adds an additional degree of freedom to achieve flexibility in optimizing the battery module and inverter independently. However, it is essential that the converter is rated for high peak power and can maintain high efficiency while operating over a wide range of load conditions to not compromise on system efficiency. Additionally, the converter must strictly adhere to all automotive standards. Currently, several hard-switching topologies have been employed such as conventional boost DC/DC, interleaved step-up DC/DC, and full-bridge DC/DC converter. These converters face respective limitations in achieving high step-up conversion ratio, size and weight issues, or high component count. In this work, a bi-directional synchronous boost DC/DC converter with easy interleaving capability is proposed with a novel ZVT mechanism. This converter steps up the EV battery voltage of 200V-300V to a wide range of variable output voltages ranging from 310V-800V. High power density and efficiency are achieved through high switching frequency of 250kHz for each phase with effective frequency doubling through interleaving. Also, use of wide bandgap high voltage SiC switches allows high efficiency operation even at high temperatures. Comprehensive analysis, design details and extensive simulation results are presented. Incorporating ZVT branch with adaptive time delay results in converter efficiency close to 98%. Experimental results from a 2.5kW hardware prototype validate the performance of the proposed approach. A peak efficiency of 98.17% has been observed in hardware in the boost or motoring mode. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
3

Driver Based Soft Switch for Pulse-Width-Modulated Power Converters

Yu, Huijie 17 March 2005 (has links)
The work in this dissertation presents the first attempt in the literature to propose the concept of "soft switch". The goal of "soft switch" is to develop a standard PWM switch cell with built-in adaptive soft switching capabilities. Just like a regular switch, only one PWM signal is needed to drive the soft switch under soft switching condition. The core technique in soft switch development is a built-in adaptive soft switching circuit with minimized circulation energy. The necessity of minimizing circulation energy is first analyzed. The design and implementation of a universal controller for implementation of variable timing control to minimize circulation energy is presented. The controller has been tested successfully with three different soft switching inverters for electric vehicles application in the Partnership for a New Generation Vehicles (PNGV) project. To simplify the control, several methods to achieve soft switching with fixed timing control are proposed by analyzing a family of zero-voltage switching converters. The driver based soft switch concept was originated from development of a base driver circuit for current driven bipolar junction transistor (BJT). A new insulated-gate-bipolar-transistor (IGBT) and power metal-oxide-semiconductor field-effect-transistor (MOSFET) gated transistor (IMGT) base drive structure was initially proposed for a high power SiC BJT. The proposed base drive method drives SiC BJTs in a way similar to a Darlington transistor. With some modification, a new base driver structure can adaptively achieve zero voltage turn-on for BJT at all load current range with one single gate. The proposed gate driver based soft switching method is verified by experimental test with both Si and SiC BJT. The idea is then broadened for "soft switch" implementation. The whole soft switched BJT (SSBJT) structure behaves like a voltage-driven soft switch. The new structure has potentially inherent soft transition property with reduced stress and switching loss. The basic concept of the current driven soft switch is then extended to a voltage-driven device such as IGBT and MOSFET. The key feature and requirement of the soft switch is outlined. A new coupled inductor based soft switching cell is proposed. The proposed zero-voltage-transition (ZVT) cell serves as a good candidate for the development of soft switch. The "Equivalent Inductor" and state plane based analysis method are used to simply the analysis of coupled inductor based zero-voltage switching scheme. With the proposed analysis method, the operational property of the ZVT cell can be identified without solving complicated differential equations. Detailed analysis and design is proposed for a 3kW boost converter example. With the proposed soft switch design, the boost converter can achieve up to 98.9% efficiency over a wide operation range with a single gate drive. A high power inverter with coupled inductor scheme is also designed with simple control compared to the earlier implementation. A family of soft-switching converters using the proposed "soft switch" cell can be developed by replacing the conventional PWM switch with the proposed soft switch. / Ph. D.
4

Análise e implementação de um circuito de auxílio à comutação integrado aplicado a uma fonte ininterrupta de energia / Analysis and implementation of an integrated auxiliary commutation circuit applied to an uninterruptible power supply

Oliveira, Adriano Toniolo de 14 April 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study proposes an auxiliary commutation circuit, applied to a double-conversion uninterruptible power supply, operating with a three-level PWM full-bridge inverter. In order to construct this circuit, we use the concept of integration of auxiliary commutation circuit: the case study of ZVT. The concept of iCAC is not directly applied to three-level PWM inverters. Then, it is necessary the use of classic auxiliary commutation techniques combined with the concept of integration. In this study, it is presented a hybrid auxiliary commutation circuit. Due to the restrictions imposed by the iCAC, just one of the inverter legs can be integrated. To the other inverter leg it is used a conventional auxiliary commutation circuit. The proposed system aims at achieving a better performance if compared to the same uninterruptible power supply operating with a classic ZVT auxiliary commutation circuit. There is also the advantage that all the auxiliary switches operate with ZVS and/or ZCZ soft switching. Through the use of iCAC it is obtained a minimization of circulating reactive energy in the auxiliary commutation circuits and it contributes to increase the global performance of the uninterruptible power supply. The number of additional components is reduced in relation to the classic CAC and, consequently, the system becomes more attractive to the industry. During this study, the analysis of the system and the simulation results are presented. Finally, experimental results are presented, comparing the efficiency of the CAC iZVT proposed system versus the classic CAC ZVT, in order to validate the proposed system. / Este trabalho propõe um circuito de auxílio à comutação, aplicado a uma fonte ininterrupta de energia de dupla conversão, operando com inversor PWM ponte completa modulado em três níveis de tensão. Para obtenção desse circuito, este trabalho utiliza o conceito de integração de circuitos de auxílio à comutação: O estudo do caso ZVT. O conceito de iCAC não é aplicável diretamente a inversores PWM modulados em três níveis de tensão. Dessa forma faz-se necessário a utilização de técnicas clássicas de auxílio à comutação em conjunto com o conceito de integração. A partir deste estudo é proposto um circuito de auxílio à comutação híbrido. Devido às restrições impostas pelo iCAC apenas uma das pernas do inversor pode ser integrada. Para a outra perna do inversor é então utilizado um circuito de auxílio à comutação convencional. O sistema proposto visa obter melhor rendimento em relação à mesma fonte ininterrupta de energia operando com circuito de auxílio à comutação clássicos do tipo ZVT. Há também a vantagem de que todas as chaves auxiliares operam com comutação suave ZVS e/ou ZCS. Com uso do conceito de iCAC é obtida a minimização da energia reativa circulante nos circuitos de auxílio à comutação, o que contribui para elevar o rendimento global da fonte ininterrupta de energia. O número de componentes adicionais é reduzido em relação ao CAC clássico, tornando assim o sistema atrativo à indústria. Ao longo desse estudo, são apresentadas as análises do funcionamento do sistema e resultados de simulação são apresentados. Por fim, resultados experimentais são apresentados, comparando a eficiência do sistema proposto CAC iZVT versus CAC ZVT clássico, para dessa forma validar o sistema proposto.
5

Conventional And Zvt Synchronous Buck Converter Design, Analysis, And Measurement

Cory, Mark 01 January 2010 (has links)
The role played by power converting circuits is extremely important to almost any electronic system built today. Circuits that use converters of any type depend on power that is consistent in form and reliable in order to properly function. In addition, today's demands require more efficient use of energy, from large stationary systems such as power plants all the way down to small mobile devices such as laptops and cell phones. This places a need to reduce any losses to a minimum. The power conversion circuitry in a system is a very good place to reduce a large amount of unnecessary loss. This can be done using circuit topologies that are low loss in nature. For low loss and high performance, soft switching topologies have offered solutions in some cases. Also, limited study has been performed on device aging effects on switching mode power converting circuits. The impact of this effect on a converter's overall efficiency is theoretically known but with little experimental evidence in support. In this thesis, non-isolated buck type switching converters will be the main focus. This type of power conversion is widely used in many systems for DC to DC voltage step down. Newer methods and topologies to raise converter power efficiency are discussed, including a new synchronous ZVT topology . Also, a study has been performed on device aging effects on converter efficiency. Various scenarios of voltage conversion, switching frequency, and circuit components as well as other conditions have been considered. Experimental testing has been performed in both cases, ZVT's benefits and device aging effects, the results of which are discussed as well.
6

Inversores ZCZVT com acoplamento magnético: síntese e análise

Martins, Mário Lúcio da Silva 10 March 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This Ph. D. Thesis presents a in deep study of the mechanism of resonant transition soft-switching techniques. By means of the principles that rules the PWM resonant transition converters, a novel tool for analysis and synthesis have been developed. This novel tool also permit to be verified some of the main factors that made possible to he ZVT technique to achieve its technology level. By means of this tool and with the definition of the basic requirements of the resonant transition converters a new concept concerning the ZCZVT technique have been generated, the ZCZVT converters with discontinuous auxiliary voltage source . The development of this new concept gives rise to a new family of ZCZVT converters with magnetically coupled auxiliary circuit. It also allowed a better perspective of the ZCZVT converters characteristics, advantages, drawbacks and limitations, which contributed significantly with the grown of the technology. Two of the six topologies with bi-directional auxiliary circuits proposed in the thesis have been mathematically analised. A design methodology based on constrains and dynamic characteristics of the IGBT and diode semiconductors under ZCS and ZVS conditions have been presented. Finally, experimental results proved the efficiency gain of the novel ZCZVT inverters with magnetically coupled auxiliary circuit. The ZCZVT inverter with magnetically coupled auxiliary circuit prototype have been compared with its Undeland snubber counterpart, presenting an efficiency of about 4% superior. It corroborates to the thesis proposal of developing novel topologies with better performance and simplicity. / O presente trabalho apresenta um estudo aprofundado do mecanismo de comutação presente nas técnicas de comutação suave com transição ressonante. Por meio da definição dos princípios que governam as comutações dos conversores PWM com transição ressonante, desenvolveu-se uma nova ferramenta para análise e síntese de novos circuitos com características aperfeiçoadas. Também através desta ferramenta de análise pode-se verificar alguns dos principais fatores que possibilitaram o amadurecimento da técnica de comutação ZVT. Com esta ferramenta e com a definição dos requisitos básicos para a operação dos conversores com transição ressonante foi gerado o conceito de conversores ZCZVT com fonte auxiliar descontínua. O desenvolvimento deste conceito deu origem a uma nova família de conversores ZCZVT com acoplamento magnético. O desenvolvimento de uma nova família de conversores ZCZVT permitiu uma melhor percepção das características destes circuitos e o amadurecimento da técnica de comutação suave ZCZVT. Duas das seis topologias de circuitos auxiliares bidirecionais propostas na tese para os novos inversores ZCZVT monofásicos com acoplamento foram analisadas matematicamente. Uma metodologia de projeto para estes inversores foi apresentada. Esta metodologia é baseada em restrições obtidas das características dinâmicas dos IGBTs e dos diodos que operam sob comutação em zero de corrente (ZCS) e zero de tensão (ZVS). Por fim, foram apresentados resultados experimentais que comprovam o ganho de eficiência do inversores ZCZVT com acoplamento magnético e circuitos auxiliares em derivação proposto. O protótipo do inversor ZCZVT foi comparado experimentalmente com um inversor utilizando snubber de Undeland, apresentando uma eficiência em média 4% superior. O que corroborou com a proposta inicial de desenvolver topologias ZCZVT com desempenho melhorado e maior simplicidade.
7

Soft Switched Multi-Phase Tapped-Boost Converter And Its Control

Mirzaei, Rahmatollah 06 1900 (has links)
Boost dc-to-dc converters have very good source interface properties. The input inductor makes the source current smooth and hence these converters provide very good EMI performance. On account of this good property, the boost converter is also the preferred converter for off-line UPF rectifiers. One of the issues of concern in these converters is the large size of the storage capacitor on the dc link. The boost converter suffers from the disadvantage of discontinuous current injected to the load. The size of the capacitor is therefore large. Further, the ripple current in the capacitor is as much as the load current; hence the ESR specification of the tank capacitor is quite demanding. This is specially so in the emerging application areas of automotive power conversion, where the input voltage is low (typically 12V) and large voltage boost (4 to 5) are desired. The first part of this thesis suggests multi-phase boost converter to overcome the disadvantages of large size storage capacitor in boost converter. Comparison between the specification of single stage and multi-stages is thoroughly examined. Besides the average small signal analysis of N converters in parallel and obtaining an equivalent second order system are discussed. By paralleling the converters the design of closed loop control is a demanding task. To achieve proper current sharing among the stages using current control method is inevitable. Design and implementation of closed loop control of multi-phase boost converter both in analog and digital is the topic of next part of the thesis. Comparison between these two approaches is presented in this part and it will be shown that digital control is more convenient for such a topology on account of the requirement of synchronization, phase shifted operation, current balancing and other desired functions, which will be discussed later in detail. A new direct digital control method, which is simple and fast, is developed. Two different realizations with DSP controller and FPGA controller are considered. In the last part of the thesis a novel soft switching circuit for boost converter is presented. It provides Zero Voltage Switching (ZVS) for the main switch and Zero Current Switching (ZCS) for the auxiliary switch. The paper presents the idealized analysis giving all the circuit intervals and the equations necessary for the design of such a circuit. The proposed soft switching circuit is particularly suited for the tapped-inductor boost circuit with a minimum number of extra components. Extension of the method to tapped inductor boost converter addresses the application of Zero Voltage Transition (ZVT) to high conversion ratio converters. Extension of the method to multiphase boost converter shows that with less number of auxiliary switches soft switching operation can be achieved for all interleaved switching devices. Several laboratory prototype boost converters have been built to confirm the theoretical results and design methods are matching with both simulation and experimental results.

Page generated in 0.0237 seconds