• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo, modelagem e simulação de um inversor de comutação suave para aplicação em filtros ativos de potência monofásicos / A study, modeling and simulation of a soft-switched inverter for an AC single-phase active power filter

Affonso, Alex Antonio 24 July 2007 (has links)
Este trabalho tem como principal objetivo apresentar um estudo, uma modelagem e uma simulação de um inversor de comutação suave para aplicação em um filtro ativo para instalações de baixa e média potência. Inicialmente apresenta uma revisão bibliográfica sobre inversores de comutação suave, onde os mesmos são classificados em função do local onde o circuito auxiliar de comutação suave está inserido, gerando três classificações básicas: comutação de linha, comutação de carga e comutação de chave. Três processos de comutação suave são apresentados: comutação em zero de tensão, comutação em zero de corrente e comutação em zero de corrente e zero de tensão. Dentro deste contexto apresentam-se as diversas topologias de inversores de comutação suave. Uma análise de comutação de um inversor em um filtro ativo monofásico é apresentada e o inversor ZCT com duas chaves auxiliares é selecionado para ser aplicado no referido filtro. Uma modelagem completa do inversor ZCT com duas chaves auxiliares é apresentada e corroborada pela comparação dos resultados de simulação obtidos a partir do modelo teórico com os resultados obtidos por meio de simulações realizadas no SPICE. A Modelagem do inversor ZCT com duas chaves auxiliares culmina em uma nova metodologia de projeto, onde é possível determinar com grande exatidão a máxima corrente de carga para a qual o inversor ainda opera no modo ZCT. Diversas simulações realizadas no Simulink/Matlab e no SPICE comprovam as comutações suaves em zero de corrente nas chaves do inversor e também o desempenho dinâmico do mesmo quando operando em um filtro ativo paralelo. / This work shows the study, the selection and the analysis of a soft-switched inverter for an ac single-phase active power filter. For this, various topologies of the soft-switched inverters are classified based upon the location of the auxiliary circuit and the topology that achieves the goals for application in the active power filter is selected. Three commutation processes are presented: zero voltage switching (ZVS), zero current switching (ZCS) and zero current and zero voltage switching (ZCZVS). The ZCT inverter with 2 auxiliaries switches is selected for the application in an ac single-phase active power filter: this topology reduces the turn-on losses and practically eliminates the turn-off losses of all IGBTs of the inverter. Some new guidelines to project the ZCT inverter with 2 auxiliaries switches are presented, achieving an accurate calculation of the maximum load current for operation in ZCT. The results of the simulation from Simulink/Matlab and SPICE prove some goals of the ZCT inverter: the ZCT inverter with 2 auxiliaries switches reduces the total losses when compared with the hard-commutation inverter and the dynamic performance of the ZCT inverter applied in an ac single-phase active power filter is showed.
2

Estudo, modelagem e simulação de um inversor de comutação suave para aplicação em filtros ativos de potência monofásicos / A study, modeling and simulation of a soft-switched inverter for an AC single-phase active power filter

Alex Antonio Affonso 24 July 2007 (has links)
Este trabalho tem como principal objetivo apresentar um estudo, uma modelagem e uma simulação de um inversor de comutação suave para aplicação em um filtro ativo para instalações de baixa e média potência. Inicialmente apresenta uma revisão bibliográfica sobre inversores de comutação suave, onde os mesmos são classificados em função do local onde o circuito auxiliar de comutação suave está inserido, gerando três classificações básicas: comutação de linha, comutação de carga e comutação de chave. Três processos de comutação suave são apresentados: comutação em zero de tensão, comutação em zero de corrente e comutação em zero de corrente e zero de tensão. Dentro deste contexto apresentam-se as diversas topologias de inversores de comutação suave. Uma análise de comutação de um inversor em um filtro ativo monofásico é apresentada e o inversor ZCT com duas chaves auxiliares é selecionado para ser aplicado no referido filtro. Uma modelagem completa do inversor ZCT com duas chaves auxiliares é apresentada e corroborada pela comparação dos resultados de simulação obtidos a partir do modelo teórico com os resultados obtidos por meio de simulações realizadas no SPICE. A Modelagem do inversor ZCT com duas chaves auxiliares culmina em uma nova metodologia de projeto, onde é possível determinar com grande exatidão a máxima corrente de carga para a qual o inversor ainda opera no modo ZCT. Diversas simulações realizadas no Simulink/Matlab e no SPICE comprovam as comutações suaves em zero de corrente nas chaves do inversor e também o desempenho dinâmico do mesmo quando operando em um filtro ativo paralelo. / This work shows the study, the selection and the analysis of a soft-switched inverter for an ac single-phase active power filter. For this, various topologies of the soft-switched inverters are classified based upon the location of the auxiliary circuit and the topology that achieves the goals for application in the active power filter is selected. Three commutation processes are presented: zero voltage switching (ZVS), zero current switching (ZCS) and zero current and zero voltage switching (ZCZVS). The ZCT inverter with 2 auxiliaries switches is selected for the application in an ac single-phase active power filter: this topology reduces the turn-on losses and practically eliminates the turn-off losses of all IGBTs of the inverter. Some new guidelines to project the ZCT inverter with 2 auxiliaries switches are presented, achieving an accurate calculation of the maximum load current for operation in ZCT. The results of the simulation from Simulink/Matlab and SPICE prove some goals of the ZCT inverter: the ZCT inverter with 2 auxiliaries switches reduces the total losses when compared with the hard-commutation inverter and the dynamic performance of the ZCT inverter applied in an ac single-phase active power filter is showed.
3

Análise, desenvolvimento e projeto de um conversor duplo Forward on-off zcs para aplicação em fontes chaveadas isoladas

Andrade, Alexandre Motta de 10 May 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A complete study of a topology resulting from a combination of two Forward structures, attached to the same magnetic core of a transformer and operating as a Full-Bridge converter is presented. In order to reduce the switching losses and the electromagnetic interference, a soft commutation cell that provides ZCS commutation of all the switches is implemented. This converter limits the current on the main switches at the load current because diverts the sinusoidal half cycle to a auxiliary switch. This way, a new Double Forward On-Off ZCS was developed. / Um estudo completo de uma topologia, resultante de uma combinação entre duas estruturas Forward, acopladas ao mesmo núcleo magnético de um transformador, e operando como um conversor Full-Bridge, é apresentado. Com o objetivo de reduzir as perdas por chaveamento e a interferência eletromagnética, uma célula de comutação não dissipativa, que fornece uma comutação ZCS para todas as chaves do conversor é implementada. Este conversor limita a corrente nas chaves principais ao valor da corrente nominal, pois desvia o semiciclo senoidal da corrente ressonante para uma chave auxiliar. Deste modo, um novo conversor Duplo Forward On-Off ZCS é obtido. / Mestre em Ciências
4

GaN-on-Si RF Switched Mode Power Amplifiers for Non-Constant Envelope Signals

January 2015 (has links)
abstract: This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers for cellular band. The designs are analyzed and compared with respect to non-idealities like finite on-resistance, finite-Q of inductors, bond-wire effects, input signal duty cycle, and supply and component variations. These architectures are designed for non-constant envelope inputs in the form of digitally modulated signals such as RFPWM, which undergo duty cycle variation. After comparing the three topologies, this work concludes that the inverse push-pull class-E power amplifier shows lower efficiency degradation at reduced duty cycles. For GaN based discrete power amplifiers which have less drain capacitance compared to GaAs or CMOS and where the switch loss is dominated by wire-bonds, an inverse push-pull class-E gives highest output power at highest efficiency. Push-pull class-E can give efficiencies comparable to inverse push-pull class-E in presence of bondwires on tuning the Zero-Voltage Switching (ZVS) network components but at a lower output power. Current-Mode Class-D (CMCD) is affected most by the presence of bondwires and gives least output power and efficiency compared to other two topologies. For systems dominated by drain capacitance loss or which has no bondwires, the CMCD and push-pull class-E gives better output power than inverse push-pull class-E. However, CMCD is more suitable for high breakdown voltage process. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
5

Low-Frequency Series Loaded Resonant Inverter Characterization

Medina, Alfredo 01 June 2016 (has links)
Modern power systems require multiple conversions between DC and AC to deliver power from renewable energy sources. Recent growth in DC loads result in increased system costs and reduced efficiency, due to redundant conversions. Advances in DC microgrid systems demonstrate superior performance by reducing conversion stages. The literature reveals practical DC microgrid systems composed of wind and solar power to replace existing fossil fuel technologies for residential consumers. Although higher efficiencies are achieved, some household appliances require AC power; thus, the need for highly efficient DC to AC converters is imperative in establishing DC microgrid systems. Resonant inverter topologies exhibit zero current switching (ZCS); hence, eliminate switching losses leading to higher efficiencies in comparison to hard switched topologies. Resonant inverters suffer severe limitations mainly attributed to a load dependent resonant frequency. Recent advancements in power electronics propose an electronically tunable inductor suited for low frequency applications [24], [25]; as a consequence, frequency stability in resonant inverters is achievable within a limited load range. This thesis characterizes the operational characteristics of a low-frequency series loaded resonant inverter using a manually tunable inductor to achieve frequency stability and determine feasibility of utilization. Simulation and hardware results demonstrate elimination of switching losses via ZCS; however, significant losses are observed in the resonant inductor which compromises overall system efficiency. Additionally, harmonic distortion severely impacts output power quality and limits practical applications.
6

LLC rezonanční měnič středního výkonu / Medium Power LCC Resonant Converter

Petrásek, Radek January 2008 (has links)
The aim of this diploma thesis is to study the resonant converters operation. This paper is concretely specialized to design and implementation the LLC resonant converter with output power about 350 watts. LLC resonant converter is prospective solution for similar applications. The general advantages are that the power MOSFETs are working on zero voltage switching condition, which reduce the switching loss and improve EMI performance. The detailed design for the LLC resonant tank characteristics presented in this paper, which fully guarantees the ZVS condition. This study is based on replacing the rectifier and load by an equivalent resistance applies the first harmonics approximation and the assumption that the current trough the diodes of the output rectifier has a sinusoidal waveform.
7

Sistema de carregamento rápido de veículo elétrico puro /

Suarez Buitrago, Camilo Alexey January 2017 (has links)
Orientador: Carlos Alberto Canesin / Resumo: Uma das principais dificuldades para a adoção dos veículos elétricos (VE) é o tempo de abastecimento (carregamento elétrico), considerado elevado quando comparado com o tempo requerido para abastecer um veículo com motor a combustão interna. O carregamento do VE típico de passageiros é geralmente realizado na residência do proprietário, ligando o carregador interno do VE em uma tomada convencional monofásica. Este método de carregamento é conhecido como de Corrente Alternada (CA), requer, tipicamente pelo menos 7 horas para fornecer uma carga completa. Por outro lado, o método de carregamento por Corrente Continua (CC) oferece tempos de carregamento entre 10 e 80 minutos. Contudo, para obter este nível de desempenho, são empregados carregadores externos de alta potência ligados de forma direta ao banco de baterias do VE. Devido ao custo e aos requerimentos de alimentação, estes carregadores rápidos são usados principalmente em aplicações públicas e comerciais. As pesquisas pelas melhores topologias a serem empregadas nos carregadores rápidos ainda são, neste ano de 2017 objeto de estudos em escala mundial. Neste contexto, este trabalho descreve a análise e implementação de um protótipo de carregador externo rápido para VE, o qual é composto por um retificador híbrido trifásico com correção ativa do fator de potência (Etapa CA-CC), seguido de um conversor tipo Buck entrelaçado (Etapa CC-CC). Na etapa CA-CC são impostas correntes de entrada senoidais, obtendo desta forma uma r... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
8

Sistema de carregamento rápido de veículo elétrico puro / Fast charger system for pure electric vehicule

Suarez Buitrago, Camilo Alexey [UNESP] 13 March 2017 (has links)
Submitted by CAMILO ALEXEY SUAREZ BUITRAGO null (camiloalexey@gmail.com) on 2017-05-05T23:51:03Z No. of bitstreams: 1 CAMILO ALEXEY SUAREZ BUITRAGO.pdf: 4865572 bytes, checksum: e8593c9e425def26a441b4b919b9d371 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-05-08T16:36:05Z (GMT) No. of bitstreams: 1 suarezbuitrago_ca_me_ilha.pdf: 4865572 bytes, checksum: e8593c9e425def26a441b4b919b9d371 (MD5) / Made available in DSpace on 2017-05-08T16:36:05Z (GMT). No. of bitstreams: 1 suarezbuitrago_ca_me_ilha.pdf: 4865572 bytes, checksum: e8593c9e425def26a441b4b919b9d371 (MD5) Previous issue date: 2017-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Uma das principais dificuldades para a adoção dos veículos elétricos (VE) é o tempo de abastecimento (carregamento elétrico), considerado elevado quando comparado com o tempo requerido para abastecer um veículo com motor a combustão interna. O carregamento do VE típico de passageiros é geralmente realizado na residência do proprietário, ligando o carregador interno do VE em uma tomada convencional monofásica. Este método de carregamento é conhecido como de Corrente Alternada (CA), requer, tipicamente pelo menos 7 horas para fornecer uma carga completa. Por outro lado, o método de carregamento por Corrente Continua (CC) oferece tempos de carregamento entre 10 e 80 minutos. Contudo, para obter este nível de desempenho, são empregados carregadores externos de alta potência ligados de forma direta ao banco de baterias do VE. Devido ao custo e aos requerimentos de alimentação, estes carregadores rápidos são usados principalmente em aplicações públicas e comerciais. As pesquisas pelas melhores topologias a serem empregadas nos carregadores rápidos ainda são, neste ano de 2017 objeto de estudos em escala mundial. Neste contexto, este trabalho descreve a análise e implementação de um protótipo de carregador externo rápido para VE, o qual é composto por um retificador híbrido trifásico com correção ativa do fator de potência (Etapa CA-CC), seguido de um conversor tipo Buck entrelaçado (Etapa CC-CC). Na etapa CA-CC são impostas correntes de entrada senoidais, obtendo desta forma uma reduzida distorção harmônica total (DHT). Nesta etapa são empregados retificadores SEPIC comutados sob corrente nula (Zero Current Switching, ZCS) controlados por uma simples modulação por histerese, em paralelo com um retificador trifásico a diodos de seis pulsos. O estágio SEPIC processa apenas uma fração da potência total entregue pelo retificador híbrido, reduzindo deste modo os esforços de corrente dos semicondutores empregados, permitindo o uso desta topologia em elevados níveis de potência. Na etapa CC-CC o conversor Buck entrelaçado é controlado por modulação de largura de pulso (Pulse-Width Modulation, PWM), permitindo assim a implantação da técnica de carregamento por corrente constante e tensão constante (Constant Current-Constant Voltage, CC-CV), comumente empregada em baterias de íons de lítio e supercapacitores (SC). Como principal resultado foi obtido o carregamento de um banco de supercapacitores de 2,54 F, com corrente constante de 20 A, variando sua tensão de 180 V a 270 V com uma duração de 40 s, obtendo uma distorção harmônica total de 3,52% na corrente de entrada, ajustando-se ao padrão IEEE 2030.1.1-2015. / One of the main barriers against electric vehicle (EV) adoption is related to the battery recharging time, which is relatively high when compared to the time required to fill up a gasoline/diesel internal combustion engine vehicle. EV charging generally is done at home, using the on-board EV charger tied to conventional single phase power inlet, this charging method is known as Alternating Current (AC) and takes at least 7 hours to provide a full charge. On the other hand, the Direct Current (DC) method offers charging times from 1.2 hours to 10 minutes. However, to reach this performance, high power off-board chargers also known as fast-chargers (FC), directly charge the EV battery bank. Due to its cost and power supply requirements FC are used only in public or commercial applications. The researches for the best FC topologies are an active area of studies over the world. This work describes the analysis and implementation of an off-board electric vehicle (EV) Fast Charger prototype. It is composed by a three-phase hybrid rectifier with power factor correction (AC/DC stage), followed by an interleaved buck converter (DC/DC stage). At AC/DC stage, sinusoidal input phase currents are imposed, and consequently low Total Harmonic Distortion (THD) is obtained by the use of Zero Current Switching (ZCS) SEPIC rectifiers, applying a simple hysteresis control technique, in parallel with a conventional three-phase six pulses diode rectifier. The SEPIC converters manage only a fraction of the total power delivered by the hybrid rectifier, reducing the semiconductors current stresses, and allowing the use of this topology for high power levels. At DC/DC stage, the interleaved buck converter is controlled by Pulse Width Modulation (PWM), allowing Constant Current–Constant Voltage (CC-CV) charging technique, typically used for Lithium-ion (Li) batteries and Supercapacitors (SC). As main result of this implementation was obtained a charging process using constant a constant current of 20A over a supercapacitor bank of 2,54 F, raising its voltage from 180V to 270V in less than 40s, having a input phase current THD of 3,52%, fulfilling the requirements of IEEE 2030.1.1-2015 standard.
9

Series Resonant Inverter for Multiple LED Lamps

Chang, Yun-Hao 30 July 2010 (has links)
This thesis proposes a high efficiency driving circuit for multiple light emitting diode (LED) lamps with dimming feature. The driving circuit consists of essentially a high-frequency half-bridge series resonant inverter with multiple output transformers, on which primary windings are connected in series, while secondary sides are loaded by LED lamps rated at different powers with different turn ratios. By controlling the frequency of the inverter, the resonant current as well as the lamp current can be regulated simultaneously. On the other hand, the LED lamps can be dimmed individually by the associated dimming switches with integral cycle control. The tactful circuit ensures a high circuit efficiency owing to less conducting losses and zero-voltage switching (ZVS) operation of the active power switches of the inverter and zero current switching (ZCS) operation of the dimming switches. Two prototype circuits designed for 60 W three RGB LED lamps and 50 W five white light LED lamps have been built and tested to verify the analytical predictions. Experimental results demonstrate that the driving circuit can operate the LED lamps at a high efficiency with a wide dimming range. The lamp power can be dimmed to 10% with frequency control, while whole dimming range can be achieved with integral cycle control. The circuit efficiency with integral cycle control is relatively higher than that with frequency control. The measured efficiencies for the two designed circuit are 93% and 90%, respectively, under the rated powers.
10

Dimmable Electronic Ballast for Multiple Cold Cathode Fluorescent Lamps

Chen, Sheng-Hui 25 July 2011 (has links)
A high-frequency half-bridge series resonant inverter with multiple output transformers is developed for driving multiple cold-cathode fluorescent lamps (CCFLs) with dimming feature. The primary sides of the transformers are connected in series with the resonant inverter to have an identical current, while the secondary sides are loaded by CCFLs with galvanic isolation to each other. To ensure a high circuit efficiency, the active power switches of the inverter are designed to be switched on at zero voltage. The resonant current of the inverter can be regulated by controlling the switching frequency of the inverter, so that all CCFLs can be dimmed simultaneously. On the other hand, the primary sides of the output transformers are associated with parallel switches to dim the CCFLs individually. These dimming switches are operated at a low frequency by integral cycle control with zero current switching (ZCS) to reduce the switching losses. The resonant circuit is tactfully designed to alleviate the variation of the resonant current caused by the switching of dimming switches. A laboratory circuit is built for driving 5 CCFLs. The intended circuit performances are confirmed by test results. The variation of the resonant current is less than 10% when the dimming switches are switching, and the measured efficiency for the circuit is 96.15% under the rated powers.

Page generated in 0.0437 seconds