Return to search

Entwicklung und Charakterisierung von Hochleistungslaserdioden bei 980 nm Wellenlänge / Development and characterization of high-power laser diodes at 980 nm wavelength

Ziel der Arbeit war die Entwicklung von lateral gekoppelten DFB-Halbleiterlasern für Hochleistungsanwendungen. Besonderes Augenmerk war dabei auf hohe COD-Schwellen und schmale Fernfeldverteilungen gerichtet. Ausgehend von einem LOC-Design wurden Simulationsrechnungen durchgeführt und ein neues Epitaxiedesign mit einer 2.5 μm dicken LOC, in welcher die aktive Schicht asymmetrisch positioniert ist, entwickelt. Durch die asymmetrische Anordnung der aktiven Schicht kann die im Falle von lateral gekoppelten DFB-Lasern sehr kritische Kopplung der Lichtmode an das modenselektive Gitter gewährleistet werden. Zudem reichen die Ausläufer der Lichtmode in diesem Design weiter in den Wellenleiter hinab als dies bei herkömmlichen Wellenleitern der Fall ist, so dass sich die Fernfeldeigenschaften der Laser verbessern. Die Fernfeldverteilungen solcher Laser weisen Halbwertsbreiten von 14° in lateraler und nur 19° in transversaler Richtung auf. Im Vergleich mit Standardstrukturen konnte die Ausdehnung des transversalen Fernfeldes also um mehr als 50 % reduziert werden. Außerdem ergibt sich eine nahezu runde Abstrahlcharakteristik, was die Einkopplungseffizienz in optische Systeme wie Glasfasern oder Linsen signifikant verbessert. Unter Ausnutzung der entwickelten Epitaxiestruktur mit asymmetrischer LOC wurde ein neues Lateraldesign entwickelt. Es handelt sich hierbei um Wellenleiterstege welche im Bereich der Facetten eine Verjüngung aufweisen. Durch diese wird die optische Mode tief in die 2.5 μm dicke Wellenleiterschicht geführt, welche sie in transversaler Richtung komplett ausfüllt. Durch den größeren Abstand der Lasermode vom Wellenleitersteg ergibt sich zudem eine deutliche schwächere laterale Führung, so dass sich die Mode auch parallel zur aktiven Schicht weiter ausdehnt. Die Lichtmode breitet sich folglich über eine deutlich größere Fläche aus, als dies bei einem gleichbleibend breiten Wellenleitersteg der Fall ist. Die somit signifikant kleinere Leistungsdichte auf der Laserfacette ist gleichbedeutend mit einem Anstieg der COD-Schwelle der Laser der im Einzelnen von den jeweiligen Designparametern von Schicht- und Lateralstruktur abhängig ist. Außerdem bewirkt die in lateraler und transversaler Richtung deutlich schwächere Lokalisation der Mode eine weitere Abnahme der Halbwertsbreiten der Laserfernfelder. Durch die im Vergleich zu herkömmlichen Laserstrukturen schwächere Lokalisation der Lichtmode im Bereich der Facetten ergeben sich äußerst schmale Fernfelder. Ein 1800 μm langer Laser, dessen Stegbreite über 200 μm hinweg auf 0.4 μm verringert wurde, zeigt Halbwertsbreiten von 5.2° in lateraler und 13.0° in transversaler Richtung. Damit sind die Fernfelder dieser Laser bedeutend kleiner als die bislang vorgestellter Laserdioden mit LOC. Die Geometrie der Taperstrukturen bestimmt, wie vollständig sich die Mode in den unteren Wellenleiterbereich ausbreiten kann und nimmt damit Einfluss auf die Laserfernfelder. Im CW-Modus durchgeführte Messungen an Lasern mit Taperstrukturen zeigen maximale Ausgangsleistung von 200 mW bevor die Laser in thermisches Überrollen übergehen. Bei einer Ausgangsleistung von 185 mW beträgt das Seitenmodenunterdrückungsverhältnis 33 dB. Im gepulsten Modus (50 ns Pulsdauer, 1MHz Wiederholungsrate) betriebene Laser zeigen hohe COD-Schwellen von mehreren hundert bis hin zu 1600 mW, die eine deutliche Abhängigkeit von der Endbreite der Taperstrukturen zeigen: Mit abnehmender Taperbreite ergibt sich eine starke Zunahme der COD-Schwelle. An einem 1800 μm langen Laser mit 200 μm langen Taperstrukturen die eine Endbreite von 0.3 μm aufweisen konnte eine COD-Schwelle von 1.6 W nachgewiesen werden. Im Gegensatz zu anderen Ansätzen, die ebenfalls longitudinal und lateral mono-modige DFB-Laser mit hohen Ausgangsleistungen zum Ziel haben, kann jedoch bei dem hier präsentierten Konzept aufgrund des Einsatzes von lateralen DFB-Gittern auf eine Unterbrechung des epitaktischen Wachstums verzichtet werden. Dies vereinfacht die Herstellung der Schichtstrukturen deutlich. Die hier vorgestellten Konzepte sind mit weiteren üblichen Vorgehensweisen zur Herstellung von Hochleistungslaserdioden, wie z.B. speziellen Facettenreinigungs- und Passivierungsverfahren oder Materialdurchmischung im Facettenbereich, kombinierbar. Zudem kann das hier am Beispiel des InGaAs/GaAs Materialsystems entwickelte Konzept auf alle zur Herstellung von Halbleiterlaserdioden üblichen Materialsysteme übertragen werden und eröffnet so eine völlig neue, material- und wellenlängenunabhängige Möglichkeit Abstrahlcharakteristik und Ausgangsleistung von Laserdioden zu optimieren. / The primary objective of this work was the development of laterally coupled DFB semiconductor laser diodes for high-power applications. Special attention was turned to high COD thresholds and narrow farfield distributions. Based on a LOC design, simulations were undertaken and a new epitaxial design was devised featuring an active layer positioned asymmetrically in a LOC with a height of 2.5 μm. This design guarantees good coupling between the light mode and the lateral grating, something that is especially critical in the case of laterally coupled DFB lasers. Furthermore, due to this design the fringes of the light mode extend farther into the waveguide layers than possible in conventional waveguides, thereby improving the farfield characteristics of the devices. The farfield distributions of these laser diodes exhibit FWHM values of 14° in lateral and only 19° in transversal direction. Compared to standard designs the dimension of the transversal farfield could be reduced by more than 50 %, resulting in an almost circular farfield pattern, hence improving the coupling efficiency into optical fibers or lenses significantly. Based on the developed epitaxial design with an asymmetrical LOC, a new ridge design was devised. It features RWGs that are tapered down to a width of only several hundred nanometers at both ends of the laser cavity. Due to this tapered sections, the optical mode is pushed down into the 2.5 μm thick waveguide, filling it out completely in transversal direction. Because of the increased distance between the lasing mode and the RWG, the lateral mode guiding is also decreased, resulting in an expansion parallel to the epitaxial layers as well. Consequently the light spreads over a significantly larger area than in the case of a RWG of constant width. The thusly reduced power density at the laser facet is tantamount to an increase in COD threshold the extent of which depends on the particular design parameters of layer and ridge design respectively. Furthermore, the weaker localisation of the light mode causes a further decrease of the farfields’ FWHM values. Due to the localisation of the light mode being weaker than in conventional laser structures, the measured lasers’ farfield distributions are very narrow. A 1800 μm long laser with a 2.0 μm wide RWG tapered down to 0.4 μm over a length of 200 μm yields FWHM values of 5.2° in lateral and 13.0° in transversal direction. These values are considerably smaller than those achieved with other laser diodes based on LOC structures presented up to now. The layout of the taper structures determines the degree of the spread into the lower waveguide and therefore influences the farfield distributions. When measured in CW mode, the tapered lasers show a maximum optical output power of 200 mW before exhibiting thermal roll-over. Measured at an output power of 185 mW, the spectral characteristics yield a SMSR of 33 dB. Operated in pulsed mode (50 ns pulse length, 1 MHz repetition rate), the laser diodes show high COD thresholds of several hundred up to 1600 mW. The COD thresholds exhibit a strong dependence on the taper width viz. a fast increase of COD threshold with decreasing taper width. Data derived from measurements conducted with a 1800 μm long laser that was tapered down to a ridge width of only 0.3 μm over a length of 200 μm, yield a COD threshold of 1.6 W. Other approaches aiming at laterally and longitudinally mono-mode high-power DFB lasers are based on an epitaxial overgrowth step. This highly risky procedure could be foregone due to the use of DFB gratings positioned laterally to the RWG. The concepts presented here are fully compatible with other procedures usually used for manufacturing high power laser diodes with high COD thresholds, such as special facet cleaning and passivation procedures or quantum-well-intermixing. Above all, although the concept developed in this work was based on the InGaAs/GaAs material system, it can be transferred to virtually every material system used for the fabrication of semiconductor laser diodes. Thus the presented concept establishes a new way of optimizing both farfield and output power of laser diodes that is independent of both material system and emission wavelength.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6214
Date January 2011
CreatorsZeller, Wolfgang
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0042 seconds