Return to search

Electromagnetic Simulations of Exotic Phenomena in Engineered Materials:

Thesis advisor: Krzysztof Kempa / “Simulations are like an experiment but on a computer.” – K. Kempa. Powerful ideas can be explored in immense detail and unmatched flexibility through computational resources. Combined with the beauty of electromagnetics, worlds of situations and problems can be uncovered. Of the many interesting phenomena available to study, a relatively recent explosion of engineered plasmonic materials has benefitted greatly from numerical breakthroughs in simulating Maxwell’s equations. Using these tools on novel metamaterial systems, composite materials with precisely designed structural features, the analysis and optimization probes the unique capabilities they have interacting with light. Example phenomena from this work includes fundamental principle breaking, extraordinary optical transmission, negative refraction, and superconductivity enhancement. The systems that harbor such outstanding feats fall into the umbrella term of metamaterials, each with distinct geometry and contrasting electrical properties that allow for an engineered control of the effective structural dielectric function. As the response to electromagnetic radiation, manipulating the dielectric function is key to creating and discovering the effects that control light, without changing any chemistry. This work scales pedagogically through the different types of metamaterials, beginning first with 2D planar checkerboard structures with highly non-linear percolation. In combination with spoofed plasmonics, the longstanding symmetry of the Babinet principle is challenged. Layers of checkerboards are then stacked and translated to create subwavelength gaps for which plasmonic coupling between layers aids in optical transmission. In fact, there is similar physics controlling other layered quasi-complementary structures shown by comparison to experimental transmittance data. A further stage introduces photonic crystals constructed out of 3D periodic lattice of nanoparticles. Photonic band structure calculations for properly designed systems suggest the possibility of bandwidths of the IR spectrum where the crystal has a negative refractive index. Such a material property allows for the invention of lenses that beat the diffraction limit, applicable to subwavelength imaging. Lastly, non-local extensions to plasmonics are theoretically worked into expressions for superconductivity, creating a resonant anti-shielding effect, in composite topological crystal/superconductor layered arrangements. Applying this to known topics, like Bi2Se3 and MgB2, shows significant boost to electron pairing and thus rises in superconducting critical temperature. Central to all the systems and effects explored are the modifications made to the dielectric function of each effective medium. Supported by electromagnetic simulations and theoretical efforts, the listed engineered materials transform the dielectric environment purposefully to originate the mentioned exotic optical phenomena. / Thesis (PhD) — Boston College, 2023. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_109805
Date January 2023
CreatorsDodge, Tyler E.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Page generated in 0.0031 seconds