Return to search

Τμηματοποίηση εικόνων υφής με χρήση πολυφασματικής ανάλυσης και ελάττωσης διαστάσεων

Τμηματοποίηση υφής ονομάζεται η διαδικασία του διαμερισμού μίας εικόνας σε πολλαπλά τμήματα-περιοχές, με κριτήριο την υφή κάθε περιοχής. Η διαδικασία αυτή βρίσκει πολλές εφαρμογές στους τομείς της υπολογιστικής όρασης, της ανάκτησης εικόνων, της ρομποτικής, της ανάλυσης δορυφορικών εικόνων κλπ. Αντικείμενο της παρούσης εργασίας είναι να διερευνηθεί η ικανότητα των αλγορίθμων μη γραμμικής ελάττωσης διάστασης, και ιδιαίτερα του αλγορίθμου Laplacian Eigenmaps, να παράγει μία αποδοτική αναπαράσταση των δεδομένων που προέρχονται από πολυφασματική ανάλυση εικόνων με χρήση φίλτρων Gabor, για την επίλυση του προβλήματος της τμηματοποίησης εικόνων υφής. Για το σκοπό αυτό προτείνεται μία νέα μέθοδος επιβλεπόμενης τμηματοποίησης υφής, που αξιοποιεί μία χαμηλής διάστασης αναπαράσταση των χαρακτηριστικών διανυσμάτων, και γνωστούς αλγόριθμους ομαδοποίησης δεδομένων όπως οι Fuzzy C-means και K-means, για την παραγωγή της τελικής τμηματοποίησης. Η αποτελεσματικότητα της μεθόδου συγκρίνεται με παρόμοιες μεθόδους που έχουν προταθεί στη βιβλιογραφία, και χρησιμοποιούν την αρχική , υψηλών διαστάσεων, αναπαράσταση των χαρακτηριστικών διανυσμάτων. Τα πειράματα διενεργήθηκαν χρησιμοποιώντας την βάση εικόνων υφής Brodatz. Κατά το στάδιο αξιολόγησης της μεθόδου, χρησιμοποιήθηκε ο δείκτης Rand index σαν μέτρο ομοιότητας ανάμεσα σε κάθε παραγόμενη τμηματοποίηση και την αντίστοιχη ground-truth τμηματοποίηση. / Texture segmentation is the process of partitioning an image into multiple segments (regions) based on their texture, with many applications in the area of computer vision, image retrieval, robotics, satellite imagery etc. The objective of this thesis is to investigate the ability of non-linear dimensionality reduction algorithms, and especially of LE algorithm, to produce an efficient representation for data derived from multi-spectral image analysis using Gabor filters, in solving the texture segmentation problem. For this purpose, we introduce a new supervised texture segmentation algorithm, which exploits a low-dimensional representation of feature vectors and well known clustering methods, such as Fuzzy C-means and K-means, to produce the final segmentation. The effectiveness of this method was compared to that of similar methods proposed in the literature, which use the initial high-dimensional representation of feature vectors. Experiments were performed on Brodatz texture database. During evaluation stage, Rand index has been used as a similarity measure between each segmentation and the corresponding ground-truth segmentation.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/3215
Date16 June 2010
CreatorsΘεοδωρακόπουλος, Ηλίας
ContributorsΟικονόμου, Γεώργιος, Theodorakopoulos, Ilias, Ζυγούρης, Ευάγγελος, Φωτόπουλος, Σπυρίδων, Οικονόμου, Γεώργιος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights6
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0027 seconds