• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Τμηματοποίηση εικόνων υφής με χρήση πολυφασματικής ανάλυσης και ελάττωσης διαστάσεων

Θεοδωρακόπουλος, Ηλίας 16 June 2010 (has links)
Τμηματοποίηση υφής ονομάζεται η διαδικασία του διαμερισμού μίας εικόνας σε πολλαπλά τμήματα-περιοχές, με κριτήριο την υφή κάθε περιοχής. Η διαδικασία αυτή βρίσκει πολλές εφαρμογές στους τομείς της υπολογιστικής όρασης, της ανάκτησης εικόνων, της ρομποτικής, της ανάλυσης δορυφορικών εικόνων κλπ. Αντικείμενο της παρούσης εργασίας είναι να διερευνηθεί η ικανότητα των αλγορίθμων μη γραμμικής ελάττωσης διάστασης, και ιδιαίτερα του αλγορίθμου Laplacian Eigenmaps, να παράγει μία αποδοτική αναπαράσταση των δεδομένων που προέρχονται από πολυφασματική ανάλυση εικόνων με χρήση φίλτρων Gabor, για την επίλυση του προβλήματος της τμηματοποίησης εικόνων υφής. Για το σκοπό αυτό προτείνεται μία νέα μέθοδος επιβλεπόμενης τμηματοποίησης υφής, που αξιοποιεί μία χαμηλής διάστασης αναπαράσταση των χαρακτηριστικών διανυσμάτων, και γνωστούς αλγόριθμους ομαδοποίησης δεδομένων όπως οι Fuzzy C-means και K-means, για την παραγωγή της τελικής τμηματοποίησης. Η αποτελεσματικότητα της μεθόδου συγκρίνεται με παρόμοιες μεθόδους που έχουν προταθεί στη βιβλιογραφία, και χρησιμοποιούν την αρχική , υψηλών διαστάσεων, αναπαράσταση των χαρακτηριστικών διανυσμάτων. Τα πειράματα διενεργήθηκαν χρησιμοποιώντας την βάση εικόνων υφής Brodatz. Κατά το στάδιο αξιολόγησης της μεθόδου, χρησιμοποιήθηκε ο δείκτης Rand index σαν μέτρο ομοιότητας ανάμεσα σε κάθε παραγόμενη τμηματοποίηση και την αντίστοιχη ground-truth τμηματοποίηση. / Texture segmentation is the process of partitioning an image into multiple segments (regions) based on their texture, with many applications in the area of computer vision, image retrieval, robotics, satellite imagery etc. The objective of this thesis is to investigate the ability of non-linear dimensionality reduction algorithms, and especially of LE algorithm, to produce an efficient representation for data derived from multi-spectral image analysis using Gabor filters, in solving the texture segmentation problem. For this purpose, we introduce a new supervised texture segmentation algorithm, which exploits a low-dimensional representation of feature vectors and well known clustering methods, such as Fuzzy C-means and K-means, to produce the final segmentation. The effectiveness of this method was compared to that of similar methods proposed in the literature, which use the initial high-dimensional representation of feature vectors. Experiments were performed on Brodatz texture database. During evaluation stage, Rand index has been used as a similarity measure between each segmentation and the corresponding ground-truth segmentation.
2

Ανάκτηση εικόνας βάσει υφής με χρήση Eye tracker / A texture based image retrieval technique using Eye tracker

Καραδήμας, Ηλίας 11 January 2011 (has links)
Η ραγδαία αύξηση των εικόνων, σε συνδυασμό με την αδυναμία των συστημάτων ανάκτησης εικόνας βάσει περιεχομένου να εξάγουν σημασιολογικά χαρακτηριστικά, οδήγησαν στην εισαγωγή του ανθρώπινου παράγοντα στην πειραματική διαδικασία. Ένας πολύ συνηθισμένος και επιτυχημένος τρόπος χρησιμοποίησης του ανθρώπινου συστήματος όρασης είναι μέσω της καταγραφής των οφθαλμικών κινήσεων. Στο σύστημα ανάκτησης το οποίο προτείνεται στην παρούσα εργασία γίνεται καταγραφή των σημείων εστίασης που προέκυψαν κατά την παρατήρηση των εικόνων βάσεως. Από τα σημεία αυτά, γίνεται εξαγωγή χαρακτηριστικών υφής με δύο μεθόδους, τα φίλτρα Gabor και το διακριτό μετασχηματισμό συνημιτόνου (DCT), παράγοντας πολυδιάστατα διανύσματα. Τα διανύσματα αυτά συγκρίνονται ανά δύο μέσω του μη παραμετρικού WW test, δημιουργώντας έναν πίνακα αποστάσεων. Με την εισαγωγή μιας ζητούμενης εικόνας στο σύστημα, τα χαρακτηριστικά υφής της συγκρίνονται με αυτά της βάσης προσθέτοντας μια επιπλέον διάσταση στον πίνακα απόστασης. Η απεικόνιση της σχέσης μεταξύ όλων των εικόνων (συμπεριλαμβανομένης και της αιτούμενης) γίνεται σε ένα χάρτη τριών διαστάσεων μέσω πολυδιάστατης κλιμάκωσης (MDS αλγόριθμος). Τα αποτελέσματα τα οποία προέρχονται από τα φίλτρα Gabor παρουσιάζουν μεγαλύτερη αξιοπιστία, κάνοντας εφικτή την επέκταση του συστήματος με χρήση μίας μεγαλύτερης βάσης εικόνων. / The rapid increase of images, combined with the weakness of the Content Based Image Retrieval (CBIR) systems to extract semantic features, led to the introduction of the human factor into the experimental procedure. A very common and successful way of using the human vision system is through the record of eye movements. In the retrieval system which is proposed in the present thesis, the fixation points that arose from viewing the database images are recorded. From these points, the texture features are extracted using two methods, Gabor filters and Discrete Cosine Transform (DCT), producing multidimensional vectors. These vectors are compared through the non parametric WW test, creating a distance matrix. By producing a query image in the system, its’ texture features are compared to those of the database, adding an extra dimension to the distance matrix. The visual representation of the relation among all the images (query image included), is depicted in a three dimensional map using multidimensional scaling (MDS algorithm). The results obtained from Gabor filters are characterized by higher robustness, making the expansion of the system possible, by using a bigger image database.
3

Κατασκευή συστήματος αναγνώρισης κινδύνου σύγκρουσης αυτοκινήτου με προπορευόμενο με ψηφιακής επεξεργασίας σημάτων video

Δούκας, Γεώργιος 20 October 2010 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η κατασκευή ενός συστήματος που να μπορεί να ξεχωρίζει τα οχήματα από άλλα αντικείμενα με τη χρήση κυματιδίου Haar και φίλτρου Gabor (εξαγωγή χαρακτηριστικών) και SVM, RBF για ταξινόμηση. / The aim of this thesis is the construction of a system that will be able to distiguish vehicles from other objects using Haar and Gabor filter (export characteristic) and SVM, RBF for classification.
4

Εύρεση γεωμετρικών χαρακτηριστικών ερυθρών αιμοσφαιρίων από εικόνες σκεδασμένου φωτός

Τρικοίλης, Ιωάννης 20 September 2010 (has links)
Στην παρούσα διπλωματική εργασία θα γίνει μελέτη και εφαρμογή μεθόδων επίλυσης του προβλήματος αναγνώρισης γεωμετρικών χαρακτηριστικών ανθρώπινων ερυθρών αιμοσφαιρίων από προσομοιωμένες εικόνες σκέδασης ΗΜ ακτινοβολίας ενός He-Ne laser 632.8 μm. Στο πρώτο κεφάλαιο γίνεται μια εισαγωγή στις ιδιότητες και τα χαρακτηριστικά του ερυθροκυττάρου καθώς, επίσης, παρουσιάζονται διάφορες ανωμαλίες των ερυθροκυττάρων και οι μέχρι στιγμής χρησιμοποιούμενοι τρόποι ανίχνευσής των. Στο δεύτερο κεφάλαιο της εργασίας γίνεται μια εισαγωγή στις ιδιότητες της ΗΜ ακτινοβολίας, περιγράφεται το φαινόμενο της σκέδασης και παρουσιάζεται το ευθύ πρόβλημα σκέδασης ΗΜ ακτινοβολίας ανθρώπινων ερυθροκυττάρων. Το τρίτο κεφάλαιο αποτελείται από δύο μέρη. Στο πρώτο μέρος γίνεται εκτενής ανάλυση της θεωρίας των τεχνητών νευρωνικών δικτύων και περιγράφονται τα νευρωνικά δίκτυα ακτινικών συναρτήσεων RBF. Στη συνέχεια, αναφέρονται οι μέθοδοι εξαγωγής παραμέτρων και, πιο συγκεκριμένα, δίνεται το θεωρητικό και μαθηματικό υπόβαθρο των μεθόδων που χρησιμοποιήθηκαν οι οποίες είναι ο αλογόριθμος Singular Value Decomposition (SVD), o Angular Radial μετασχηματισμός (ART) και φίλτρα Gabor. Στο δεύτερο μέρος περιγράφεται η επίλυση του αντίστροφου προβλήματος σκέδασης. Παρουσιάζεται η μεθοδολογία της διαδικασίας επίλυσης όπου εφαρμόστηκαν ο αλογόριθμος συμπίεσης εικόνας SVD, o περιγραφέας σχήματος ART και ο περιγραφέας υφής με φίλτρα Gabor για την εύρεση των γεωμετρικών χαρακτηριστικών και νευρωνικό δίκτυο ακτινικών συναρτήσεων RBF για την ταξινόμηση των ερυθροκυττάρων. Στο τέταρτο και τελευταίο κεφάλαιο γίνεται δοκιμή και αξιολόγηση της μεθόδου και συνοψίζονται τα αποτελέσματα και τα συμπεράσματα που εξήχθησαν κατά τη διάρκεια της εκπόνησης αυτής της διπλωματικής. / In this thesis we study and implement methods of estimating the geometrical features of the human red blood cell from a set of simulated light scattering images produced by a He-Ne laser beam at 632.8 μm. Ιn first chapter an introduction to the properties and the characteristics of red blood cells are presented. Furthermore, we describe various abnormalities of erythrocytes and the until now used ways of detection. In second chapter the properties of electromagnetic radiation and the light scattering problem of EM radiation from human erythrocytes are presented. The third chapter consists of two parts. In first part we analyse the theory of neural networks and we describe the radial basis function neural network. Then, we describe the theoritical and mathematical background of the methods that we use for feature extraction which are Singular Value Decomposition (SVD), Angular Radial Transform and Gabor filters. In second part the solution of the inverse problem of light scattering is described. We present the methodology of the solution process in which we implement a Singular Value Decomposition approach, a shape descriptor with Angular Radial Transform and a homogenous texture descriptor which uses Gabor filters for the estimation of the geometrical characteristics and a RBF neural network for the classification of the erythrocytes. In the forth and last chapter the described methods are evaluated and we summarise the experimental results and conclusions that were extracted from this thesis.

Page generated in 0.1848 seconds