Spelling suggestions: "subject:"ανάκτηση εικόνας"" "subject:"ανάκτησης εικόνας""
1 |
Ανάκτηση εικόνας βάσει υφής με χρήση Eye tracker / A texture based image retrieval technique using Eye trackerΚαραδήμας, Ηλίας 11 January 2011 (has links)
Η ραγδαία αύξηση των εικόνων, σε συνδυασμό με την αδυναμία των συστημάτων ανάκτησης εικόνας βάσει περιεχομένου να εξάγουν σημασιολογικά χαρακτηριστικά, οδήγησαν στην εισαγωγή του ανθρώπινου παράγοντα στην πειραματική διαδικασία. Ένας πολύ συνηθισμένος και επιτυχημένος τρόπος χρησιμοποίησης του ανθρώπινου συστήματος όρασης είναι μέσω της καταγραφής των οφθαλμικών κινήσεων. Στο σύστημα ανάκτησης το οποίο προτείνεται στην παρούσα εργασία γίνεται καταγραφή των σημείων εστίασης που προέκυψαν κατά την παρατήρηση των εικόνων βάσεως. Από τα σημεία αυτά, γίνεται εξαγωγή χαρακτηριστικών υφής με δύο μεθόδους, τα φίλτρα Gabor και το διακριτό μετασχηματισμό συνημιτόνου (DCT), παράγοντας πολυδιάστατα διανύσματα. Τα διανύσματα αυτά συγκρίνονται ανά δύο μέσω του μη παραμετρικού WW test, δημιουργώντας έναν πίνακα αποστάσεων. Με την εισαγωγή μιας ζητούμενης εικόνας στο σύστημα, τα χαρακτηριστικά υφής της συγκρίνονται με αυτά της βάσης προσθέτοντας μια επιπλέον διάσταση στον πίνακα απόστασης.
Η απεικόνιση της σχέσης μεταξύ όλων των εικόνων (συμπεριλαμβανομένης και της αιτούμενης) γίνεται σε ένα χάρτη τριών διαστάσεων μέσω πολυδιάστατης κλιμάκωσης (MDS αλγόριθμος). Τα αποτελέσματα τα οποία προέρχονται από τα φίλτρα Gabor παρουσιάζουν μεγαλύτερη αξιοπιστία, κάνοντας εφικτή την επέκταση του συστήματος με χρήση μίας μεγαλύτερης βάσης εικόνων. / The rapid increase of images, combined with the weakness of the Content Based Image Retrieval (CBIR) systems to extract semantic features, led to the introduction of the human factor into the experimental procedure. A very common and successful way of using the human vision system is through the record of eye movements. In the retrieval system which is proposed in the present thesis, the fixation points that arose from viewing the database images are recorded. From these points, the texture features are extracted using two methods, Gabor filters and Discrete Cosine Transform (DCT), producing multidimensional vectors. These vectors are compared through the non parametric WW test, creating a distance matrix. By producing a query image in the system, its’ texture features are compared to those of the database, adding an extra dimension to the distance matrix.
The visual representation of the relation among all the images (query image included), is depicted in a three dimensional map using multidimensional scaling (MDS algorithm). The results obtained from Gabor filters are characterized by higher robustness, making the expansion of the system possible, by using a bigger image database.
|
2 |
Ανάπτυξη μεθόδων ανάκτησης εικόνας βάσει περιεχομένου σε αναπαραστάσεις αντικειμένων ασαφών ορίων / Development of methods for content-based image retrieval in representations of fuzzily bounded objectsΚαρτσακάλης, Κωνσταντίνος 11 March 2014 (has links)
Τα δεδομένα εικόνων που προκύπτουν από την χρήση βιο-ιατρικών μηχανημάτων είναι από την φύση τους ασαφή, χάρη σε μια σειρά από παράγοντες ανάμεσα στους οποίους οι περιορισμοί στον χώρο, τον χρόνο, οι παραμετρικές αναλύσεις καθώς και οι φυσικοί περιορισμοί που επιβάλλει το εκάστοτε μηχάνημα. Όταν το αντικείμενο ενδιαφέροντος σε μια τέτοια εικόνα έχει κάποιο μοτίβο φωτεινότητας ευκρινώς διαφορετικό από τα μοτίβα των υπόλοιπων αντικειμένων που εμφανίζονται, είναι εφικτή η κατάτμηση της εικόνας με έναν απόλυτο, δυαδικό τρόπο που να εκφράζει επαρκώς τα όρια των αντικειμένων. Συχνά ωστόσο σε τέτοιες εικόνες υπεισέρχονται παράγοντες όπως η ανομοιογένεια των υλικών που απεικονίζονται, θόλωμα, θόρυβος ή και μεταβολές στο υπόβαθρο που εισάγονται από την συσκευή απεικόνισης με αποτέλεσμα οι εντάσεις φωτεινότητας σε μια τέτοια εικόνα να εμφανίζονται με έναν ασαφή, βαθμωτό, «μη-δυαδικό» τρόπο.
Μια πρωτοπόρα τάση στην σχετική βιβλιογραφία είναι η αξιοποίηση της ασαφούς σύνθεσης των αντικειμένων μιας τέτοιας εικόνας, με τρόπο ώστε η ασάφεια να αποτελεί γνώρισμα του εκάστοτε αντικειμένου αντί για ανεπιθύμητο χαρακτηριστικό: αντλώντας από την θεωρία ασαφών συνόλων, τέτοιες προσεγγίσεις κατατμούν μια εικόνα με βαθμωτό, μη-δυαδικό τρόπο αποφεύγοντας τον μονοσήμαντο καθορισμό ορίων μεταξύ των αντικειμένων. Μια τέτοια προσέγγιση καταφέρνει να αποτυπώσει με μαθηματικούς όρους την ασάφεια της θολής εικόνας, μετατρέποντάς την σε χρήσιμο εργαλείο ανάλυσης στα χέρια ενός ειδικού. Από την άλλη, το μέγεθος της ασάφειας που παρατηρείται σε τέτοιες εικόνες είναι τέτοιο ώστε πολλές φορές να ωθεί τους ειδικούς σε διαφορετικές ή και αντικρουόμενες κατατμήσεις, ακόμη και από το ίδιο ανθρώπινο χέρι. Επιπλέον, το παραπάνω έχει ως αποτέλεσμα την οικοδόμηση βάσεων δεδομένων στις οποίες για μια εικόνα αποθηκεύονται πολλαπλές κατατμήσεις, δυαδικές και μη.
Μπορούμε με βάση μια κατάτμηση εικόνας να ανακτήσουμε άλλες, παρόμοιες τέτοιες εικόνες των οποίων τα δεδομένα έχουν προέλθει από αναλύσεις ειδικών, χωρίς σε κάποιο βήμα να υποβαθμίζουμε την ασαφή φύση των αντικειμένων που απεικονίζονται; Πως επιχειρείται η ανάκτηση σε μια βάση δεδομένων στην οποία έχουν αποθηκευτεί οι παραπάνω πολλαπλές κατατμήσεις για κάθε εικόνα; Αποτελεί κριτήριο ομοιότητας μεταξύ εικόνων το πόσο συχνά θα επέλεγε ένας ειδικός να οριοθετήσει ένα εικονοστοιχείο μιας τέτοιας εικόνας εντός ή εκτός ενός τέτοιου θολού αντικειμένου;
Στα πλαίσια της παρούσας εργασίας προσπαθούμε να απαντήσουμε στα παραπάνω ερωτήματα, μελετώντας διεξοδικά την διαδικασία ανάκτησης τέτοιων εικόνων. Προσεγγίζουμε το πρόβλημα θεωρώντας ότι για κάθε εικόνα αποθηκεύονται στην βάση μας περισσότερες της μίας κατατμήσεις, τόσο δυαδικής φύσης από ειδικούς όσο και από ασαφείς από αυτόματους αλγορίθμους. Επιδιώκουμε εκμεταλλευόμενοι το χαρακτηριστικό της ασάφειας να ενοποιήσουμε την διαδικασία της ανάκτησης και για τις δυο παραπάνω περιπτώσεις, προσεγγίζοντας την συχνότητα με την οποία ένας ειδικός θα οριοθετούσε το εκάστοτε ασαφές αντικείμενο με συγκεκριμένο τρόπο καθώς και τα ενδογενή χαρακτηριστικά ενός ασαφούς αντικειμένου που έχει εξαχθεί από αυτόματο αλγόριθμο. Προτείνουμε κατάλληλο μηχανισμό ανάκτησης ο οποίος αναλαμβάνει την μετάβαση από τον χώρο της αναποφασιστικότητας και του ασαφούς στον χώρο της πιθανοτικής αναπαράστασης, διατηρώντας παράλληλα όλους τους περιορισμούς που έχουν επιβληθεί στα δεδομένα από την πρωταρχική ανάλυσή τους. Στην συνέχεια αξιολογούμε την διαδικασία της ανάκτησης, εφαρμόζοντας την νέα μέθοδο σε ήδη υπάρχον σύνολο δεδομένων από το οποίο και εξάγουμε συμπεράσματα για τα αποτελέσματά της. / Image data acquired through the use of bio-medical scanners are by nature fuzzy, thanks to a series of factors including limitations in spatial, temporal and parametric resolutions other than the physical limitations of the device. When the object of interest in such an image displays intensity patterns that are distinct from the patterns of other objects appearing together, a segmentation of the image in a hard, binary manner that clearly defines the borders between objects is feasible. It is frequent though that in such images factors like the lack of homogeneity between materials depicted, blurring, noise or deviations in the background pose difficulties in the above process. Intensity values in such an image appear in a fuzzy, gradient, “non-binary” manner.
An innovative trend in the field of study is to make use of the fuzzy composition of objects in such an image, in a way in which fuzziness becomes a characteristic feature of the object instead of an undesirable trait: deriving from the theory of fuzzy sets, such approaches segment an image in a gradient, non-binary manner, therefore avoiding to set up a clear boundary between depicted objects. Such approaches are successful in capturing the fuzziness of the blurry image in mathematical terms, transforming the quality into a powerful tool of analysis in the hands of an expert. On the other hand, the scale of fuzziness observed in such images often leads experts towards different or contradictory segmentations, even drawn by the same human hand. What is more, the aforementioned case results in the compilation of image data bases consisting of multiple segmentations for each image, both binary and fuzzy.
Are we able, by segmenting an image, to retrieve other similar such images whose segmented data have been acquired by experts, without downgrading the importance of the fuzziness of the objects depicted in any step involved? How exactly are images in such a database storing multiple segmentations of each retrieved? Is the frequency with which an expert would choose to either include or exclude from a fuzzy object a pixel of an image, a criterion of semblance between objects depicted in images? Finally, how able are we to tackle the feature of fuzziness in a probabilistic manner, thus providing a valuable tool in bridging the gap between automatic segmentation algorithms and segmentations coming from field experts?
In the context of this thesis, we tackle the aforementioned problems studying thoroughly the process of image retrieval in a fuzzy context. We consider the case in which a database consists of images for which exist more than one segmentations, both crisp, derived by experts’ analysis, and fuzzy, generated by segmentation algorithms. We attempt to unify the retrieval process for both cases by taking advantage of the feature of fuzziness, and by approximating the frequency with which an expert would confine the boundaries of the fuzzy object in a uniform manner, along with the intrinsic features of a fuzzy, algorithm-generated object. We propose a suitable retrieval mechanism that undertakes the transition from the field of indecisiveness to that of a probabilistic representation, at the same time preserving all the limitations imposed on the data by their initial analysis. Next, we evaluate the retrieval process, by implementing the new method on an already existing data-set and draw conclusions on the effectiveness of the proposed scheme.
|
Page generated in 0.0407 seconds