Return to search

Computational Studies of Spin Trapping of Biologically Relevant Radicals by New Heteroaryl Nitrones

Heteroaryl nitrone spin traps have been suggested to act as free radical scavengers. The geometry optimizations and the single-point energies of the spin trapping reactions of the heteroaryl nitrones, 5,5-dimethylpyrroline-N-oxide (DMPO) and α-phenyl-N-t-butylnitrone (PBN) have been computationally studied using ab initio (Hartree-Fock (HF) and second-order Møller-Plesset (MP2)) methods and Density Functional Theory (DFT) methods. The effects of new heteroaryl substituents on a parent nitrone spin trap have been examined at the HF and MP2 levels with the 6-31G*, and cc-pVnZ (n=D, T, Q) basis sets. The thermodynamics of the spin trapping at the C-site and O-site with •H, •CH3 and •OH radicals were studied at the HF/6-31G* and DFT/m06/6-31G* levels. The addition reactions favor at the C-sites and the double adducts are thermodynamically more stable than the mono adducts. The spin trapping of DMPO, PBN and α(Z)-(3-methylfuroxan-4-yl)-N-tert-butylnitrone (FxBN) with •OH have also been studied.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4463
Date01 May 2016
CreatorsAsempa, Eyram
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0024 seconds