Return to search

A Detailed Examination of the Phosphorylation of APLF Residue Serine-116 in the Context of DNA Damage

APLF is a forkhead associated (FHA) domain-containing protein with unique poly(ADP)-ribose (PAR)-binding zinc finger (PBZ) domains that are involved in the DNA damage response. The interaction of the APLF PBZ domains with PAR is essential for the rapid recruitment of APLF to sites of DNA double strand breaks (DSBs), while the FHA domain facilitates non-homologous end-joining. In response to ionizing radiation (IR), APLF is phosphorylated at Serine-116 (APLFS116), although the function of this post-translational modification has yet to be defined. Here we provide a detailed characterization of the IR-induced and ATM- dependent phosphorylation of endogenous APLF at Serine-116 in the context of DNA damage. We additionally examine a novel APLF FHA-dependent interaction with 53BP1 (p53 Binding protein 1). Together, we illustrate that APLFS116 phosphorylation is dependent upon both the tandem PBZ domains, as well as the FHA-domain, and that the depletion of either PARP3 or 53BP1, similarly affected APLFS116 phosphorylation. Furthermore, we show that DSB-repair was compromised in cells expressing the APLFS116A mutation. Collectively, our findings provide a detailed understanding of the molecular pathway that leads to the phosphorylation of APLF following DNA damage and suggest that APLFS116 phosphorylation facilitates APLF-dependent
DSB repair.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43947
Date05 March 2014
CreatorsFenton, Amanda L.
ContributorsKoch, C. Anne
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds