Return to search

Un modèle multi-agent distribué et hybride pour la planification du transport à la demande temps réel

Durant ces dernières années, la congestion du trafic urbain et la pollution de l'air sont devenus d'énormes problèmes dans de nombreuses villes dans le monde. Afin de réduire cette congestion, nous pouvons investir dans l'amélioration des infrastructures de la ville. Toutefois, cette solution reste très coûteuse à entreprendre et de ne permet pas de réduire la pollution de l'air. C'est pourquoi nous travaillons sur la mobilité intelligente afin de disposer d'une meilleure utilisation de la voiture. L'application de nouvelles technologies de l'information, tels que les systèmes multi-agents appliqués au contrôle de l'information de la circulation urbaine, a permis de créer et de déployer une gestion plus intelligente du trafic comme le système DRT (transport à la demande). L'objectif des systèmes multi-agents basés sur le DRT est de gérer les taxis de manière intelligente, afin d'accroître le nombre de passagers dans chaque véhicule, et en même temps à réduire le nombre de véhicules dans les rues. Cela permettra de réduire les émissions de CO2 et la pollution de l'air causée par les véhicules, ainsi que la congestion du trafic et les coûts financiers associés. La simulation multi-agents est considérée comme un outil efficace pour les services dynamiques urbains de la circulation. Toutefois, le principal problème est de savoir comment construire un agent à base de modèle pour cette problématique. Ces travaux de recherche présente une solution basée sur les systèmes multi-agents réactifs pour la problématique du transport à la demande (DRT), qui adopte une approche multi-agent de planification urbaine en utilisant des services de contrôle qui satisfont aux principales contraintes : réduction de la période totale creuse, demandes spéciales du client, augmentation du nombre de places utilisées dans un même taxi, utilisation du nombre minimal de véhicules, etc. Dans cette thèse, nous proposons un modèle multi-agents multicouche hybride distribué pour des problématiques en temps réel. Dans la méthode proposée, un agent pour chaque véhicule trouve un ensemble de routes pour sa recherche locale, et choisit un itinéraire en coopérant avec d'autres agents se trouvant dans son domaine de planification. Nous avons examiné expérimentalement, l'efficacité de la méthode proposée.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00558769
Date29 October 2008
CreatorsXu, Jin
PublisherINSA de Rouen
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds