Return to search

Machine learning for the prediction of duplex stainless steel mechanical properties : Hardness evolution under low temperature aging

Duplex stainless steels, DSS are stainless steels that consist of the two phases austenite and ferrite.  The DSS have superb properties and are widely used in industries such as nuclear power and in pressure vessels, pipes and in pipelines.  The use of DSS are limited due to embrittlement which occurs at temperatures from 250 to 550 oC. This imposes a general limited service temperature of 250 oC. The mechanism mainly responsible for the embrittlement is a phase separation occurring in the ferrite phase. Furthermore, there is a direct link between the phase separation and the mechanical properties:  the ferrite hardness increases whereas the toughness decreases under low temperature aging.  In this thesis, the low-temperature embrittlement of duplex stainless  steels  was  studied  through  machine learning  modelling  and  experimental hardness-  and  microscopy measurements.   The  resulting  model  describes  the  data with an accuracy, R-squared = 0.94.  In combination with the experimental results, nickel  was identified  as  an  important  parameter  for  the  hardness  evolution.   This work aims to provide a fundamental study for understanding the importance of alloying elements on the phase separation in DSS, and provides a new methodology via a combination of machine learning and key experiments for the material design. / Duplexa rostfria stål är rostfria stål som består av de båda faserna ferrit och austenit. De har extraordinära egenskaper och används brett inom industrin, t ex. i kärnkraftverk och  i  tryckkärl  och  pipelines.  Användningen av  duplexa  rostfria stål  är  begränsad p.g.a.  försprödning som uppstår i legeringarna vid temperaturer mellan 250-550 oC, vilket  medför  att  den  tillåtna  temperaturen  vid  användning  begränsas  till  under 250 oC.  Den  främsta  orsaken  till  försprödningen  är  en  fasseparation  i  den  ferrita fasen under åldring vid låg temperatur.  Vidare leder fasseparationen till mekaniska förändringar i ferritfasen: hårdheten  ökar  medan  segheten  minskar.   I  den här  rapporten  undersöks försprödningen  av  duplexa  rostfria  stål  vid  åldring  med hjälp av datormodellering med maskininlärning samt av experimentella hårdhets- och mikroskopiska  mätningar.   Modellen  hade  en  noggrannhet  (determinationsko- efficienten,  R2)  på  0.94.   Resultatet  från  modellen  visade  tillsammans  med de  experimentella  resultaten  att  nickel  är  ett  legeringsämne  som  har  stor betydelse  för hårdhetsökningen.  Detta  arbete  syftar  till  att  utgöra  en grundläggande  studie  för att förstå påverkan från olika legeringsämnen på fasseparationer i DSS, och bidrar med en ny metodik för materialdesign som kombinerar maskininlärning och utvaldaexperiment. / EIT RawMaterial Project ENDUREIT

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-298415
Date January 2021
CreatorsGiard, Baptiste, Karlsson, Sofia
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2021:283

Page generated in 0.003 seconds