Machine Learning models trained using supervised learning can achieve great results when a sufficient amount of labeled data is used. However, the annotation process is a costly and time-consuming task. There are many methods devised to make the annotation pipeline more user and data efficient. This thesis explores techniques from Active Learning, Zero-shot Learning, Data Augmentation domains as well as pre-annotation with revision in the context of multi-label classification. Active ’Learnings goal is to choose the most informative samples for labeling. As an Active Learning state-of-the-art technique Contrastive Active Learning was adapted to a multi-label case. Once there is some labeled data, we can augment samples to make the dataset more diverse. English-German-English Backtranslation was used to perform Data Augmentation. Zero-shot learning is a setup in which a Machine Learning model can make predictions for classes it was not trained to predict. Zero-shot via Textual Entailment was leveraged in this study and its usefulness for pre-annotation with revision was reported. The results on the Reviews of Electric Vehicle Charging Stations dataset show that it may be beneficial to use Active Learning and Data Augmentation in the annotation pipeline. Active Learning methods such as Contrastive Active Learning can identify samples belonging to the rarest classes while Data Augmentation via Backtranslation can improve performance especially when little training data is available. The results for Zero-shot Learning via Textual Entailment experiments show that this technique is not suitable for the production environment. / Klassificeringsmodeller som tränas med övervakad inlärning kan uppnå goda resultat när en tillräcklig mängd annoterad data används. Annoteringsprocessen är dock en kostsam och tidskrävande uppgift. Det finns många metoder utarbetade för att göra annoteringspipelinen mer användar- och dataeffektiv. Detta examensarbete utforskar tekniker från områdena Active Learning, Zero-shot Learning, Data Augmentation, samt pre-annotering, där annoterarens roll är att verifiera eller revidera en klass föreslagen av systemet. Målet med Active Learning är att välja de mest informativa datapunkterna för annotering. Contrastive Active Learning utökades till fallet där en datapunkt kan tillhöra flera klasser. Om det redan finns några annoterade data kan vi utöka datamängden med artificiella datapunkter, med syfte att göra datasetet mer mångsidigt. Engelsk-Tysk-Engelsk översättning användes för att konstruera sådana artificiella datapunkter. Zero-shot-inlärning är en teknik i vilken en maskininlärningsmodell kan göra förutsägelser för klasser som den inte var tränad att förutsäga. Zero-shot via Textual Entailment utnyttjades i denna studie för att utöka datamängden med artificiella datapunkter. Resultat från datamängden “Reviews of Electric Vehicle Charging ”Stations visar att det kan vara fördelaktigt att använda Active Learning och Data Augmentation i annoteringspipelinen. Active Learning-metoder som Contrastive Active Learning kan identifiera datapunkter som tillhör de mest sällsynta klasserna, medan Data Augmentation via Backtranslation kan förbättra klassificerarens prestanda, särskilt när få träningsdata finns tillgänglig. Resultaten för Zero-shot Learning visar att denna teknik inte är lämplig för en produktionsmiljö.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321087 |
Date | January 2022 |
Creators | Miszkurka, Agnieszka |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:611 |
Page generated in 0.0022 seconds