The Standard Model of the particle physics predicts the existence of a massive scalar boson, usually referred to as Higgs boson in the literature, as resulting from the Spontaneous Symmetry Breaking mechanism, needed to generate the mass of the particles. The Higgs boson whose mass is theoretically undetermined, is experimentally looked for since half a century by various experiments. This is the case of the ATLAS experiment at LHC which started taking data from high energy collisions in 2010. One of the most important decay channel in the LHC environment is the diphoton channel, because the final state can be completely reconstructed with high precision. The photon energy response is a key point in this analysis, as the signal would appear as a narrow resonance over a large background. In this thesis, a detailed study of the photon energy response, using the ATLAS electromagnetic calorimeter has been performed. This study has provided a better understanding of the photon energy resolution and scale, thus enabling an improvement of the sensitivity of the diphoton analysis as well as a precise determination of the systematic uncertainties on the peak position. The diphoton decay channel had a prominent role in the discovery of a new particle compatible with the Standard Model Higgs boson by the ATLAS and CMS experiments, that occurred in July 2012. Using this channel as well as the better understanding of the photon energy response, a measurement of the mass of this particle is proposed in this thesis, with the data collected in 2011 and 2012 at a center-of-mass energy of 7 TeV and 8 TeV. A mass of 126.8 +/- 0.2 (stat) +\- 0.7 (syst) GeV/c2 is found. The calibration of the photon energy measurement with the calorimeter is the source of the largest systematic uncertainty on this measurement. Strategies to reduce this systematic error are discussed.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00924105 |
Date | 10 September 2013 |
Creators | Lorenzo Martinez, Narei |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.002 seconds