The Newsvendor problem is a classical supply chain problem used to develop strategies for inventory optimization. The goal of the newsvendor problem is to predict the optimal order quantity of a product to meet an uncertain demand in the future, given that the demand distribution itself is known. The Ice Cream Vendor Problem extends the classical newsvendor problem to an uncertain demand with unknown distribution, albeit a distribution that is known to depend on exogenous features. The goal is thus to estimate the order quantity that minimizes the total cost when demand does not follow any known statistical distribution. The problem is formulated as a mathematical programming problem and solved using a Deep Neural network approach. The feature-dependent demand data used to train and test the deep neural network is produced by a discrete event simulation based on actual daily temperature data, among other features.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5455 |
Date | 01 August 2021 |
Creators | Solihu, Gaffar |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0113 seconds