Return to search

Applying Deep Learning to the Ice Cream Vendor Problem: An Extension of the Newsvendor Problem

The Newsvendor problem is a classical supply chain problem used to develop strategies for inventory optimization. The goal of the newsvendor problem is to predict the optimal order quantity of a product to meet an uncertain demand in the future, given that the demand distribution itself is known. The Ice Cream Vendor Problem extends the classical newsvendor problem to an uncertain demand with unknown distribution, albeit a distribution that is known to depend on exogenous features. The goal is thus to estimate the order quantity that minimizes the total cost when demand does not follow any known statistical distribution. The problem is formulated as a mathematical programming problem and solved using a Deep Neural network approach. The feature-dependent demand data used to train and test the deep neural network is produced by a discrete event simulation based on actual daily temperature data, among other features.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5455
Date01 August 2021
CreatorsSolihu, Gaffar
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0113 seconds