Data centers operations are notoriously energy-hungry, with the computing and cooling infrastructures drawing comparable amount of electrical power to operate. A direction to improve their efciency is to optimizethe cooling, in the sense of implementing cooling infrastructures controlschemes that avoid performing over-cooling of the servers.Towards this direction, this work investigates minimum cost linearquadratic control strategies for the problem of managing air cooled datacenters. We derive a physical and a black box model for a general datacenter, identify this model from real data, and then derive, present andtest in the eld a model based Linear-Quadratic Regulator (LQR) strategy that sets the optimal coolant temperature for each individual coolingunit. To validate the approach we compare the eld tests from the LQR strategy against classical Proportional-Integral-Derivative (PID) controlstrategies, and show through our experiments that it is possible to reducethe energy consumption with respect to the existing practices by severalpoints percent without harming the servers within the data center fromthermal perspectives.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-71031 |
Date | January 2018 |
Creators | Aasa, Johan |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds