Return to search

[en] NAMED ENTITY RECOGNITION FOR PORTUGUESE / [pt] RECONHECIMENTO DE ENTIDADES MENCIONADAS PARA O PORTUGUÊS

[pt] A produção e acesso a quantidades imensas dados é um elemento pervasivo da era da informação. O volume de informação disponível é sem precedentes na história da humanidade e está sobre constante processo de expansão. Uma oportunidade que emerge neste ambiente é o desenvolvimento de aplicações que sejam capazes de estruturar conhecimento contido nesses dados. Neste contexto se encaixa a área de Processamento de Linguagem Natural (PLN) - Natural Language Processing (NLP) - , ser capaz de extrair informações estruturadas de maneira eficiente de fontes textuais. Um passo fundamental para esse fim é a tarefa de Reconhecimento de Entidades Mencionadas (ou nomeadas) - Named Entity Recognition (NER) - que consistem em delimitar e categorizar menções a entidades num texto. A construção de sistemas para NLP deve ser acompanhada de datasets que expressem o entendimento humano sobre as estruturas gramaticais de interesse, para que seja possível realizar a comparação dos resultados com o real
discernimento humano. Esses datasets são recursos escassos, que requerem esforço humano para sua produção. Atualmente, a tarefa de NER vem sendo abordada com sucesso por meio de redes neurais artificiais, que requerem conjuntos de dados anotados tanto para avaliação quanto para treino. A proposta deste trabalho é desenvolver um dataset de grandes dimensões para a tarefa de NER em português de maneira automatizada, minimizando a necessidade de intervenção humana. Utilizamos recursos públicos como fonte de dados, nominalmente o DBpedia e Wikipédia. Desenvolvemos uma metodologia para a construção do corpus e realizamos experimentos sobre o mesmo utilizando arquiteturas de redes neurais de melhores performances reportadas atualmente. Exploramos diversas modelos de redes neurais, explorando diversos valores de hiperparâmetros e propondo arquiteturas com o foco específico de incorporar fontes de dados diferentes para treino. / [en] The production and access of huge amounts of data is a pervasive element of the Information Age. The volume of availiable data is without precedents in human history and it s in constant expansion. An oportunity that emerges in this context is the development and usage of applicationos that are capable structuring the knowledge of data. In this context fits the Natural Language Processing, being able to extract information efficiently from textual data. A fundamental step for this goal is the task of Named Entity Recognition (NER) which delimits and categorizes the mentions to entities. The development o systems for NLP tasks must be accompanied by datasets produced by humans in order to compare the system with the human discerniment for the NLP task at hand. These datasets are a scarse resource which the construction is costly in terms of human supervision. Recentlly, the NER task has been approached using artificial network models which needs datsets for both training and evaluation. In this work we propose the construction of a datasets for portuguese NER with an automatic approach using public data sources structured according to the principles of SemanticWeb, namely, DBpedia and Wikipédia. A metodology for the construction of this dataset was developed and experiments were performed using both the built dataset and the neural network architectures with the best reported results. Many setups for the experiments were evaluated, we obtained preliminary results for diverse hiperparameters
values, also proposing architectures with the specific focus of incorporating diverse data sources for training.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:35855
Date13 December 2018
CreatorsDANIEL SPECHT SILVA MENEZES
ContributorsRUY LUIZ MILIDIU
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0027 seconds