The importance and requirements of certifying safety critical software is today more apparent than ever. This study focuses on the standards and practices used within the avionics, automotive and medical domain when it comes to safety critical software. We identify critical problems and trends when certifying safety critical software and propose a proof-of-concept using static analysis, model checking and incremental SAT solving as a contribution towards solving the identified problems. We present quantitative execution times and code coverage results of our proposed solution. The proposed solution is developed under the assumptions of safety critical software standards and compared to other studies proposing similar methods. Lastly, we conclude the issues and advantages of our proof-of-concept in perspective of the software developer community
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-161335 |
Date | January 2019 |
Creators | Holm, Oscar |
Publisher | Linköpings universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds