The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up to order, as a product of prime elements. Unfortunately, not every ring possesses this property for its elements. The work of mathematicians like Kummer and Dedekind lead to the study of a special type of ring, which we now call a Dedekind domain, where even though unique prime factorization of elements may fail, the ideals of a Dedekind domain still enjoy the property of unique prime factorization into a product of prime ideals, up to order of the factors. This thesis seeks to establish the unique prime ideal factorization of ideals in a special type of Dedekind domain: the ring of algebraic integers of an imaginary quadratic number field.
Identifer | oai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-1223 |
Date | 01 June 2015 |
Creators | Rezola, Nolberto |
Publisher | CSUSB ScholarWorks |
Source Sets | California State University San Bernardino |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses, Projects, and Dissertations |
Page generated in 0.0028 seconds