Return to search

Deep Reinforcement Learning for the Optimization of Combining Raster Images in Forest Planning

Raster images represent the treatment options of how the forest will be cut. Economic benefits from cutting the forest will be generated after the treatment is selected and executed. Existing raster images have many clusters and small sizes, this becomes the principal cause of overhead. If we can fully explore the relationship among the raster images and combine the old data sets according to the optimization algorithm to generate a new raster image, then this result will surpass the existing raster images and create higher economic benefits.    The question of this project is can we create a dynamic model that treats the updating pixel’s status as an agent selecting options for an empty raster image in response to neighborhood environmental and landscape parameters. This project is trying to explore if it is realistic to use deep reinforcement learning to generate new and superior raster images. Finally, this project aims to explore the feasibility, usefulness, and effectiveness of deep reinforcement learning algorithms in optimizing existing treatment options.    The problem was modeled as a Markov decision process, in which the pixel to be updated was an agent of the empty raster image, which would determine the choice of the treatment option for the current empty pixel. This project used the Deep Q learning neural network model to calculate the Q values. The temporal difference reinforcement learning algorithm was applied to predict future rewards and to update model parameters.   After the modeling was completed, this project set up the model usefulness experiment to test the usefulness of the model. Then the parameter correlation experiment was set to test the correlation between the parameters and the benefit of the model. Finally, the trained model was used to generate a larger size raster image to test its effectiveness.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-43510
Date January 2021
CreatorsWen, Yangyang
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds