Cette thèse est consacrée à l'introduction d'une compactification des familles de fractions rationnelles dynamiquement marquées de degré d>1 utilisant la compactification de Deligne-Mumford dans le cas particulier du genre zéro. Nous montrerons que les éléments du compactifié peuvent être identifiés à des revêtements d'arbres de sphères dynamiques dont nous donnerons quelques propriétés propres. Dans ce cadre nous pouvons retrouver les résultats démontrés à ce jour par J. Kiwi sur les limites renormalisées sans utiliser les espaces de Berkovich et ré-interpréter d'autres travaux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00965792 |
Date | 09 December 2013 |
Creators | Arfeux, Matthieu |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds