Return to search

Delta conjectures and Theta refinements

Dans les années 90 Garsia et Haiman ont introduit le $mathfrak S_n$-module des emph{harmoniques diagonales}, c'est à dire les co-invariants de l'action diagonale du groupe symétrique $mathfrak S_n$ sur les polynômes à deux ensembles de $n$ variables. Ils ont proposé la conjecture selon laquelle le caractère de Frobenius bi-gradué de leur module est $abla e_n$, où $abla$ est un opérateur sur l'anneau des fonction symétriques. En 2002, Haiman prouva cette conjecture. Quelques années plus tard, Haglund, Haiman, Loehr, Remmel et Ulyanov proposèrent une formule combinatoire pour la fonction symétrique $abla e_n$, qu'ils appelèrent la emph{conjecture shuffle}. Les objets combinatoires qui y figurent sont les chemins de Dyck étiquetés. Un raffinement emph{compositionnel} de cette formule fut ensuite proposé par Haglund, Morse et Zabrocki. C'était ce raffinement que Carlsson et Mellit réussirent enfin à montrer en 2018, établissant ainsi le emph{théorème shuffle}. La emph{conjecture Delta} est une paire de formules combinatoires pour la fonction symétrique $Delta'_{e_{n-k-1}}e_n$ en termes des chemins de Dyck étiquetés et décorés, qui généralise le théorème shuffle. Elle fut proposée par Hagund, Remmel et Wilson en 2015 est reste aujourd'hui un problème ouvert. Dans la même publication les auteurs proposèrent une formule pour $Delta_{h_m}Delta'_{e_{n-k-1}}e_n$ en termes de chemins de Dyck partiellement étiquetés et décorés, appelé emph{conjecture Delta généralisée}. Nous proposons un raffinement compositionnel de la conjecture Delta en utilisant des nouveaux opérateurs de fonctions symétriques: les opérateurs Theta. Nous généralisons les arguments combinatoires que Carlsson et Mellit utilisèrent pour la preuve du théorème shuffle au contexte de la conjecture Delta. Nous prouvons également la formule pour $Delta_{h_m} abla e_n$ en termes de chemins de Dyck partiellement étiqueté, c'est à dire le cas $k=0$ de la conjecture Delta généralisée. En 2006, Can et Loehr proposèrent la emph{conjecture carré}, exprimant la fonction symétrique $(-1)^{n-1}abla p_n$ en termes de chemins carrés étiquetés. Sergel montra que le théorème shuffle implique la conjecture carré. Nous généralisons le résultat de Sergel en montrant que une des formules de la conjecture Delta généralisée implique une formule combinatoire de la fonction $(-1)^{n-k}Delta_{h_m}Theta_kp_{n-k}$ e / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/314077
Date19 November 2020
CreatorsVanden Wyngaerd, Anna
ContributorsD'Adderio, Michele, Leemans, Dimitri, Vercruysse, Joost, Gandini, Jacopo, Mellit, Anton
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format3 full-text file(s): application/pdf | application/pdf | application/pdf
Rights3 full-text file(s): info:eu-repo/semantics/closedAccess | info:eu-repo/semantics/openAccess | info:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds