Return to search

An Investigation of How Well Random Forest Regression Can Predict Demand : Is Random Forest Regression better at predicting the sell-through of close to date products at different discount levels than a basic linear model?

Allt eftersom klimatkrisen fortskrider ökar engagemanget kring hållbarhet inom företag. Växthusgaser är ett av de största problemen och matsvinn har därför fått mycket uppmärksamhet sedan det utnämndes till den tredje största bidragaren till de globala utsläppen. För att minska sitt bidrag rabatterar många matbutiker produkter med kort bästföredatum, vilket kommit att kräva en förståelse för hur priskänslig efterfrågan på denna typ av produkt är. Prisoptimering görs vanligtvis med så kallade Generalized Linear Models men då efterfrågan är ett komplext koncept har maskininl ärningsmetoder börjat utmana de traditionella modellerna. En sådan metod är Random Forest Regression, och syftet med uppsatsen är att utreda ifall modellen är bättre på att estimera efterfrågan baserat på rabattnivå än en klassisk linjär modell. Vidare utreds det ifall ett tydligt linjärt samband existerar mellan rabattnivå och efterfrågan, samt ifall detta beror av produkttyp. Resultaten visar på att Random Forest tar bättre hänsyn till det komplexa samband som visade sig finnas, och i detta specifika fall presterar bättre. Vidare visade resultaten att det sammantaget inte finns något linjärt samband, men att vissa produktkategorier uppvisar svag linjäritet. / As the climate crisis continues to evolve many companies focus their development on becoming more sustainable. With greenhouse gases being highlighted as the main problem, food waste has obtained a great deal of attention after being named the third largest contributor to global emissions. One way retailers have attempted to improve is through offering close-to-date produce at discount, hence decreasing levels of food being thrown away. To minimize waste the level of discount must be optimized, and as the products can be seen as flawed the known price-to-demand relation of the products may be insufficient. The optimization process historically involves generalized linear regression models, however demand is a complex concept influenced by many factors. This report investigates whether a Machine Learning model, Random Forest Regression, is better at estimating the demand of close-to-date products at different discount levels than a basic linear regression model. The discussion also includes an analysis on whether discounts always increase the will to buy and whether this depends on product type. The results show that Random Forest to a greater extent considers the many factors influencing demand and is superior as a predictor in this case. Furthermore it was concluded that there is generally not a clear linear relation however this does depend on product type as certain categories showed some linearity.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302025
Date January 2021
CreatorsJonsson, Estrid, Fredrikson, Sara
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:376

Page generated in 0.0019 seconds