Viral protein R (Vpr) is an evolutionarily conserved but poorly understood protein encoded by all primate lentiviruses, including the lineages that gave rise to both human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2), the causative agents of AIDS in humans. In this work, I sought to define the contribution of primate lentiviral Vpr to viral replication and evasion from cell-intrinsic antiviral defenses. I found that HIV-1 infection of human dendritic cells (MDDCs) is substantially attenuated upon infection with Vpr-deficient (HIV-1/ΔVpr) virus compared to wild-type (WT) infection. This replication defect to HIV-1/ΔVpr is evident in a single round of infection, results in reduced levels of viral transcription, and is relieved upon complementation by virion-associated Vpr. The block to transcription is alleviated through Vpr-engagement with the Cul4A/DCAF/DDB1 (DCAFCRL4) ubiquitin ligase complex and a yet-to-be identified host factor, hypothesized to induce the DNA damage response (DDR) in infected cells. MDDCs are critical immune cells that are poised to detect invading viruses through a variety of cell-intrinsic antiviral sensors, resulting in the production of type I interferon (IFN) and restriction of virus replication. Surprisingly, infection of MDDCs with Vpr-deficient lentiviruses (HIV-2 or SIVmac) resulted in production of type I IFN indicating that this pathway is targeted by Vpr. I determined that signaling cascades that induce NF-κB-dependent type I IFN production are triggered in response to lentiviral integration, an obligatory process in lentivirus life cycle that results in host DNA lesions and subsequent repair by cellular DNA repair machinery. I also demonstrated that mutations in SIVmac Vpr that ablate the ability to initiate DDR are unable to counteract the antiviral type I IFN response. Together, our work suggests the existence of a novel host factor that detects lentiviral integration in MDDCs to trigger an innate immune response that blocks virus dissemination. I hypothesize that Vpr by overcoming this cell intrinsic block to integration would be a critical viral adaptation to facilitate cross-species transmission that resulted in the HIV pandemic. / 2018-11-01T00:00:00Z
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/26512 |
Date | 01 November 2017 |
Creators | Miller, Caitlin Michelle |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Rights | Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0015 seconds