Orientador: Helena Maria Andre Bolini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-11T04:55:59Z (GMT). No. of bitstreams: 1
Alves_LeonardoRangel_M.pdf: 410164 bytes, checksum: eed7ffe76f347f00d0abb009ed908230 (MD5)
Previous issue date: 2008 / Resumo: Este estudo objetivou Identificar direcionadores de preferência de oito amostras comerciais de néctar de uva (tradicionais e ¿light¿) utilizando metodologias estatísticas avançadas para relacionar dados de perfil sensorial, físico-químicos e aceitabilidade. Oito amostras comerciais de néctares de uva (quatro tradicionais e suas respectivas versões ¿light¿) foram analisadas. Um teste de Aceitação utilizando a escala hedônica híbrida foi realizado com 114 consumidores. Quatorze termos descritivos foram avaliados por uma equipe sensorial e seis atributos físico-químicos foram medidos. As amostras de néctar de uva A e C foram as mais aceitas e as amostras CL e DL (¿light¿) foram as mais rejeitadas. Construiu-se um Mapa de Preferência Interno e em seguida uma Análise de ¿Cluster¿ foi realizada para o atributo Impressão Global. Dois grupos de consumidores foram encontrados. A principal diferença entre os grupos foi com relação à utilização de diferentes porções da escala pelos consumidores de cada grupo. A metodologia PLSR foi utilizada para relacionar a aceitação dos consumidores com os termos descritivos e atributos físico-químicos, fornecendo correlações entre eles. Os resultados mostraram que os atributos Sabor de Uva, Sabor Residual de Uva, Acidez Total Titulável, Aroma de Uva, Cor Vinho, °Brix, Viscosidade, Acidez, Turbidez, Adstringência, Fenóis Totais e Consistência nesta ordem de importância, estavam fortemente correlacionados com a Impressão Global dos consumidores sendo portanto os direcionadores de preferência encontrados / Abstract: This study depicts the PLS regression method used to help find drivers of liking of the grape nectar. Eight commercial brands (four traditional and four lights) were analyzed. An acceptance test using hybrid hedonic scale was performed with 114 consumers. Fourteen attributes were evaluated by a sensory team of fourteen members, and six physical-chemical attributes were measured. The most accepted samples were A and C, and the less accepted ones were CL and DL (lights). An Internal Preference Mapping followed by a Cluster Analysis was performed on the consumer grades to Global Impression. Two clusters of consumers were found. The mainly difference between clusters was the use of different portions of the scale by the consumers. The PLSR methodology was used to relate the acceptance with the sensory and physical-chemical attributes giving a correlation between them. The model showed the importance of each sensory or physicalchemical attribute for the model projection. The results showed that Grape Flavor; Residual Grape Flavor, Total Sourness Titration, Grape Aroma, Wine Color, °Brix, Viscosity, Sourness, Turbidity, Astringency, Total Phenols and Consistency were positive correlated with consumer grades to Global Impression, therefore they are called drivers of liking / Mestrado / Consumo e Qualidade de Alimentos / Mestre em Alimentos e Nutrição
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/254232 |
Date | 07 October 2008 |
Creators | Alves, Leonardo Rangel |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Bolini, Helena Maria André, 1961-, Noronha, Regina Lucia Firmento de, Rodrigues, Maria Isabel |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos, Programa de Pós-Graduação em Alimentos e Nutrição |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 70f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds