Return to search

Fabricação de microssistemas eletroforéticos integrados com detecção condutométrica sem contato capacitivamente acoplada

Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-23T20:14:26Z
No. of bitstreams: 2
Dissertação Laura Braga.pdf: 3078196 bytes, checksum: 4e0d981972cc02801917c5b9a35ae977 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-23T20:47:31Z (GMT) No. of bitstreams: 2
Dissertação Laura Braga.pdf: 3078196 bytes, checksum: 4e0d981972cc02801917c5b9a35ae977 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T20:47:31Z (GMT). No. of bitstreams: 2
Dissertação Laura Braga.pdf: 3078196 bytes, checksum: 4e0d981972cc02801917c5b9a35ae977 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-06-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work describes the development ofelectrophoresis microchips integrated with capacitively coupled contactless conductivity detection (C4D). MSE were produced in poly(dimethylsiloxane) (PDMS) by soft lithography. For this purpose, high-relief masters were produced on (i) silicon substrates by photolithography, (ii) polyester films by laser printing and (iii) copper plates by wet chemical etching. The devices fabricated by photolithography were used to investigate the effects of the electrode orientation and length, the optimization of the operating and geometric parameters on the analytical performance of the detector. The results have shown that the analytical signal intensity is greater when employing electrodes with width of 2 mm, spaced by a minimal gap (1mm) and arranged in an antiparallel configuration. The optimal frequency found was 400 kHz. Furthermore, it was observed that the signal intensity increases linearly for amplitude values up to 5 Vpp. PDMS devices obtained with toner and copper masters were employed to perform eletrophoretic separations of inorganic cations using the previously optimized conditions. The alternative masters and the resulting PDMS channels were characterized according to their dimensions, surface roughness and replication fidelity. On toner masters, it was verified that the wider the line, the ticker the toner layer. For widths between 50 and 300 μm, the toner thickness ranged from 5 to 10 μm. On the other hand, the line height on copper masters was determined by the etching time. For lines with widths between 50 and 300 μm, the height ranged from 72 to 82 μm, under an etching rate of 7.6 ± 1.7 μm/min. Regarding the roughness, copper masters presented more uniform surfaces in comparison to toner masters. This difference is due to the additional heating step used to transfer the toner mask. The proposed masters have shown good replication fidelity and also excellent capability of producing multiple replicas with a single master. The main drawback found with the fabrication technology is associated with the laser printer resolution. However, the easiness of fabrication and low instrumental costare suitable to be implemented in locations with limited resources or restricted access to conventional microfabrication techniques. / Este trabalho descreve o desenvolvimento de microssistemas eletroforéticos (MSE) integrados com detecção condutométrica sem contato capacitivamente acoplada (C4D). Os MSE foram produzidos em poli(dimetilsiloxano) (PDMS) através da técnica de litografia suave. Para esta finalidade, os moldes para prototipagem dos MSE foram obtidos por (i) gravação fotolitográfica em silício, (ii) impressão direta em filmes de poliéster e (iii) corrosão química em placas de cobre. Os dispositivos fabricados fotolitograficamente foram empregados no estudo da orientação e comprimento dos eletrodos, bem como na otimização dos parâmetros operacionais e geométricos do detector. Os resultados mostraram que a intensidade do sinal analítico é maior quando se emprega eletrodos com largura de 2 mm, separados por um gap mínimo (1 mm) e orientados na configuração antiparalela. Além disso, a avaliação dos parâmetros operacionais demonstrou que a frequência ótima de trabalho foi de 400 kHz, e o sinal varia linearmente com amplitudes até 5 Vpp. Após a obtenção das melhores condições de detecção, os dispositivos de PDMS replicados com os moldes de toner e cobre foram empregados em separações eletroforéticas de cátions inorgânicos. Além disso, os moldes e a estrutura dos microcanais fabricados pelo método alternativo foram caracterizados quanto à largura, altura, rugosidade da superfície e fidelidade de replicação. No molde de toner, verificou-se que quanto maior a largura das linhas impressas mais espessa é a camada de toner. Para larguras compreendidas entre 50 e 300 μm, a espessura variou de 5 a 10 μm. No molde de cobre, a corrosão se procedeu a uma taxa de 7,6 ± 1,7 μm/min, o que permitiu a obtenção de linhas com altura entre 72 e 82 μm. Em relação a rugosidade, o molde de cobre apresentou a superfície mais uniforme que o molde de toner, devido o aquecimento adicional na etapa de transferência da máscara. Ambos os moldes apresentaram boa fidelidade de replicação, podendo ser reusado várias vezes para a prototipagem dos microcanais. A principal desvantagem da técnica é que as dimensões dos canais são limitadas pela resolução da impressora a laser. Entretanto, a facilidade de fabricação e o baixo custo instrumental são vantagens que tornam o processo atrativo e viável para ser implementado em locais com recursos limitados e acesso restrito à instrumentação especializada.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3147
Date28 June 2013
CreatorsBraga, Laura Eulália de Paula
ContributorsColtro, Wendell Karlos Tomazelli, Coltro, Wendell Karlos Tomazelli, Chaves, Andréa Rodrigues, Ionashiro, Elias Yuki
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Química (IQ), UFG, Brasil, Instituto de Química - IQ (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation663693921325415158, 600, 600, 600, 600, 7826066743741197278, -6794069463227071484, 2075167498588264571, ABAD-VILLAR, E. M.; KUBÁŇ, P.; HAUSER, P. C. Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector. Electrophoresis, v. 26, n. 19, 3609–3614, 2005. ABDELGAWAD, M.; WATSON, M. W.L.; YOUNG, E. W. K..; MUDRIK, J. M.; UNGRIN, M. D.; WHEELER, A. R. Soft lithography: masters on demand. Lab Chip, v. 8, n. 8, p. 1379–1385, 2008. BAO, N.; ZHANG, Q.; XU, J. J.;CHEN, H. Y. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. Journal of Chromatography A, v. 1089, n. 1-2, p. 270-275, 2005. BECKER, H.; GARTNER, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis, v.21, n.1, p.12-26,2000. BECKER, H.; LOCASCIO, L. E. Polymer microfluidic devices. Talanta, v. 56, n. 2, p. 267-287, 2002. BECKER, H.; GARTNER, C. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, v. 390, n. 1, p. 89-111, 2008. BRITO-NETO, J. G.; da SILVA, J. A. F.; BLANES, L.; do LAGO, C. L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics. Electroanalysis, v. 17, n. 13, p. 1207-1214, 2005. CHEN. Z.; LI. Q.; LI. O.; ZHOU, X.; LAN,Y.; WEI, Y.; MO, J. A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. Talanta, v. 71, n. 5, p. 1944–1950, 2007. COLTRO, Wendell Karlos Tomazelli. Fabricação e avaliação de microdispositivos para eletroforese com detecção eletroquímica. São Carlos, 2004. 125p. Dissertação (Mestrado) – Instituto de Química de São Carlos, Universidade de São Paulo. COLTRO, W. K. T.; PICCIN, E.; CARRILHO, E.; DE JESUS, D. P.; da SILVA, J. A. F.; da SILVA, H. D. T.; do LAGO, C. L. Microssistemas de análises químicas. Introdução, tecnologias de fabricação, instrumentação e aplicações. Química Nova, v. 30 n. 8, p. 1986-2000, 2007. COLTRO, Wendell Karlos Tomazelli. Detecção condutométrica sem contato: uma nova ferramenta para monitoramento de interações biomoleculares em microssistemas analíticos. São Carlos, 2008. 247p. Tese (Doutorado) – Instituto de Química de São Carlos, Universidade de São Paulo. COLTRO, W. K. T.; da SILVA, J. A. F.; CARRILHO, E. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Electrophoresis, v. 29, n. 11, p. 2260-2265, 2008. COLTRO, W. K. T.; da SILVA, J. A. F.; CARRILHO, E. Rapid prototyping of polymeric electrophoresis microchips with integrated copper electrodes for 90 contactless conductivity detection. Analytical Methods, v. 3, n. 1, p. 168-172, 2011. COLTRO, W. K. T.; LIMA, R. S.; SEGATO, T. P.; CARRILHO, E.; DE JESUS, D. P.; do LAGO, C. L.; da SILVA, J. A. F. Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Analytical Methods, v. 4, n. 1, p. 25-33, 2012. da SILVA, J. A. F; do LAGO, C. L. An Oscillometric Detector for Capillary Electrophoresis. Analytical Chemistry, v. 70, n. 20, p. 4339-4343, 1998. da SILVA, José Alberto Fracassi. Detecção condutométrica sem contato (oscilométrica) para eletroforese capilar de zona e cromatografia micelar eletrocinética. 2001. 178 p. Tese (Doutorado) - Instituto de Química de São Paulo, Universidade de São Paulo. da SILVA, J. A. F.; GUZMAN, N.; do LAGO, C. L. Contactless conductivity detection for capillary electrophoresis: Hardware improvements and optimization of the input-signal amplitude and frequency. Journal of Chromatography A, v. 942, n. 1–2, p. 249–258, 2001. DING, Y.; GARCIA, C.D.; ROGERS, K. Poly(dimethylsiloxane) Microchip Electrophoresis with Contactless Conductivity Detection for Measurement of Chemical Warfare Agent Degradation Products. Analytical Letters, v. 41, n. 2, p. 335 – 350, 2008. DING, Y.; ROGERS, K. Measurement of Nitrogen Mustard Degradation Products by Poly(dimethylsiloxane) Microchip Electrophoresis with Contactless Conductivity Detection. Electroanalysis, v. 20, n. 20, p. 2192–2198, 2008. DING, Y.; ROGERS, K. Determination of haloacetic acids in water using solid-phase extraction/microchip capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, v. 31, n. 15, p. 2602–2607, 2010. do LAGO, C. L.; da SILVA, H. D. T.; NEVES, C. A.; BRITO-NETO, J. G. A.; da SILVA, J. A. F. A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. Analytical Chemistry, v. 75, n. 15, p. 3853-3858, 2003. DUFFY, D. C.; MCDONALD, J. C.; SCHUELLER, O. J. A.; WHITESIDES, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, v. 70, n. 23, p. 4974-4984, 1998. HENRY, C. S. Microchip capillary electrophoresis: methods and protocols. New York: Humana Press, 2006. 248 p. FERCHER, G.; HALLER, A.; SMETANA, W.; VELLEKOOPT, M. J. End-to-End Differential Contact less Conductivity Sensor for Microchip Capillary Electrophoresis. Analytical Chemistry, v. 82, n. 8, p. 3270-3275, 2010. FIORAVANTE JUNIOR, N. P. Caracterização e otimização dos processos defotolitografia aplicados na fabricação de dispositivos micrométricos MOS e microssistemas. Campinas, SP, 2006. 94p. Dissertação (Mestrado) - Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas. FONSECA, Alexandre. Construção e Avaliação de Microssistemas para Análise em Fluxo. Campinas, 2008. 151p.Tese (Doutorado) – Instituto de Química, Universidade Estadual de Campinas. FU, L. M.; YANG, R. J.; LEE, G. B.; LIU, H. H. Electrokinetic injection techniques in microfluidic chips. Analytical Chemistry, v. 74, n. 19, p. 5084-5091, 2002. GABRIEL, Ellen Flávia Moreira. Avaliação do desempenho analítico de microssistemas eletroforéticos fabricados em poliéster-toner. Goiânia, 2012. 102p. Dissertação (Mestrado) – Instituto de Química, Universidade Federal de Goiás. GONG, X. Y.; HAUSER, P. C. Enantiomeric separation of underivatized small amines in conventional and on-chip capillary electrophoresis with contactless conductivity detection. Electrophoresis, v. 27, n. 21, p. 4375–4382, 2006. GUIJT, R. M.; BALTUSSEN, E.; VAN DER STEEN, G.; FRANK, H.; BILLIET, H.; SCHALKHAMMER, T.; LAUGERE, F.; VELLEKOOP, M.; BERTHOLD, A.; SARRO, L.; VAN DEDEM, G. W. K. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis, v. 22, n. 12, p. 2537-2541, 2001. GUIJT, R. M.; ARMSTRONG, J. P.; CANDISH, E.; LEFLEUR, V.; PERCEY, W. J.; SHABALA, S.; HAUSER, P. C.; BREADMORE, M. C. Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sensors and Actuators B-Chemical, v. 159, n. 1, p. 307-313, 2011. HENDERSON, R. D.; GUIJT, R. M.; ANDREWARTHA, L.; LEWIS, T. W.; RODEMANN, T.; HENDERSON, A.; HILDER, E. F.; HADDAD, P. R.; BREADMORE. M. C. Lab-on-a-Chip device with laser-patterned polymerelectrodes for high voltage application and contactless conductivity detectionChemical Communications, v. 48, n. 74, p. 9287-9289, 2012. HONG, C.; BAO, D.; THOMAS, M. S.; CLIFT, J. M.; VULLEV, V. I. Print-and-Peel Fabrication of Microelectrodes. Langmuir, v. 24, n. 16, p. 8439–8442, 2008. KOERNER, T.; BROWN, L.; XIE, R.; OLESCHUK, R.D. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B, v. 7, n. 2, p. 632–639, 2005. KUBÁŇ, P.; HAUSER, P. C. Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis. Electrophoresis, v. 26, n. 16, p. 3169-3178, 2005a. KUBÁÑ, P.; HAUSER, P. C. Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis. Lab on a Chip, v. 5, n. 4, p. 407-415, 2005b. KUBÁŇ, P.; HAUSER, P. C. Evaluation of microchip capillary electrophoresis with external contactless conductivity detection for the determination of major inorganic ions and lithium in serum and urine samples. Lab on a Chip, v. 8, n. 11, p. 1829-1836, 2008. KUMAR, A.; BURNS, J.; HOFFMANN, W.; DEMATTIO, H.; MALIK, A. K.; MATYSIK, F. M. Determination of hydrazines by chip electrophoresis with contactless conductivity detection. Electrophoresis, v. 32, n. 8, p. 920–925, 2011. KUPKA, R. K.; BOUAMRANE, F.; CREMERS, C.; MEGTERT. S. Microfabrication: LIGA-X and applications”. Applied Surface Science, v.164, n. 1-4, p. 90-97, 2000. LEE, C. Y.; CHEN, C. M.; CHANG, G. L.; LIN, C. H.; FU, L. M. Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector – CE microchips. Electrophoresis, v. 27, n. 24, p. 5043–5050, 2006. LI, O. A.; TONG, Y. L.; CHEN, Z. G.; LIU, C.; ZHAO, S.; MO, J. Y. A Glass/PDMS Hybrid Microfluidic Chip Embedded with Integrated Electrodes for Contactless Conductivity Detection. Chromatographia, v. 68, n. 11, p. 1039-1044, 2008. LICHTENBERG, J.; ROOIJ, N. F.; VERPOORTE, E. A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection. Electrophoresis, v. 23, n. 21, p. 3769-3780, 2002. LIN, C.H.; LEE, G.B.; CHANG, B. W.; CHANG, G.L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. Journal Of Micromechanics And Microengineering, v. 12, n. 5, p. 590-597, 2002. LIU, B. Y.; JIN, Q. H.; ZHANG, Y.; MAYER, D.; KRAUSE, H. J.; ZHAO, J. L.; OFFENHÄUSSER, A. A simple poly(dimethylsiloxane) electrophoresis microchip with an integrated contactless conductivity detector. Microchimica Acta, v. 172, n. 1, p. 193-198, 2011a. LIU, J. S.; WANG, J. Y.; CHEN, Z. G.; YU, Y.; YANG, X. J.; ZHANG, X. B.; XU, Z.; LIU, C. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection. Lab on a Chip, v. 11, n. 5, p. 969-973, 2011b. LIU, B.; ZHANG, Y.; MAYER, D.; KRAUSE, H. J.; JIN, Q.; ZHAO, J.; OFFENHÄUSSER, A. A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a low-noise contactless conductivity detector. Electrophoresis, v. 32, n. 6-7, p. 699-704, 2011c. LIU, J.; XU, F.; WANG, S.; CHEN , Z.; PAN, J.; MA, X.; JIA, X.; XU, Z.; LIU, C.;WANG, L. A polydimethylsiloxane electrophoresis microchip with a thickness controllable insulating layer for capacitatively coupled contactless conductivity detection. Electrochemistry Communications, v. 25, p. 147–150, 2012a. LIU, B.; ZHANG, Y.; MAYER, D.; KRAUSE, H.J.; JIN, Q.; ZHAO, J.; OFFENHAUSSER, A.; XU, Y. Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis, v.33, n. 8, p. 1247–1250, 2012b. LORENZ, H.; DESPONT, M.; FAHRNI, N.; LABIANCA, N.; RENAUD, P.; VETTIGER, P. SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, v. 7, n. 3, p. 121-124, 1997. MA, J. P.; CHEN, L. X.; GUAN, Y. F. Research on electrokinetic pump techniques. Progress in Chemistry, v. 19, n. 11, p. 1826-1831, 2007. MA, L.B.; XU, Y.; LIANG, J.; LIU, H. T.; GAN, J.; LI, D. S.; PENG, J.L..; WU, S. Separation and Detection of Urinary Proteins by Microfluidic Chip Integrated with Contactless Conductivity Detector. Chinese Journal Of Analytical Chemistry, v. 39, n. 8, p. 1123–1128, 2011. MAHABADI, K. A.; RODRIGUEZ, I.; LIM, C. Y.; MAURYA, D. K.; HAUSER, P. C.; ROOIJ, N. F. Capacitively coupled contactlessconductivity detection with dualtop–bottom cell configuration for microchipelectrophoresis. Electrophoresis, v. 31, n. 6, p. 1063–1070, 2010. MANZ, A.; HARRISON, D. J.; VERPOORTE, E.; FETTINGER, J. C.; PAULUS, A.; LUDI, H.;WIDMER, H. M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrophoresis on a chip. Journal of Chromatography A, v. 593, n. 1-2, p. 253-258, 1992. MARK, J. J. P.; KUMAR, A.; DEMATTIO, H.; HOFFMANN W.; MALIK, A.; MATYSIK, F. M. Combination of headspace single-drop microextraction, microchip electrophoresis and contactless conductivity detection for the determination of aliphatic amines in the biodegradation process of seafood samples. Electroanalysis, v. 23, n. 1, p. 161-168, 2011. MARTYNOVA, L.; LOCASCIO, L. E.; GAITAN, M.; KRAMER, G. W.; CHRISTENSEN, R. G.; MACCREHAN, W. A. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry, v. 69, n. 23, p. 4783-4789, 1997. MCDONALD, J. C.; DUFFY, D. C.; ANDERSON, J. R.; CHIU, D. T.; WU, H.; SCHUELLER, O. J. A.; WHITESIDES, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, v. 21, n. 1, p. 27-40, 2000. MCDONALD, J.C.; WHITESIDES, G. M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, v. 35, n. 7, p. 491-499, 2002. PUMERA, M.; WANG, J.; OPEKAR, F.; JELÍNEK, I.; FELDMAN, J.; LÖWE, H.; HARDT, S. Contactless conductivity detector for microchip capillary electrophoresis. Analytical Chemistry, v. 74, n. 9, p. 1968-1971, 2002. RIVERA, Luis Enrique Gutierrez. Fabricação e caracterização de nanopeneiraspoliméricas. Campinas, 2009. 81p. Tese (Doutorado) - Instituto de Física de Campinas, Universidade Estadual de Campinas. SAITO, R. M.; COLTRO, W. K. T.; de JESUS, D. P. Instrumentation design for hydrodynamic sample injection in microchip electrophoresis: A review. Electrophoresis, v. 33, n.17, p. 2614-2623, 2012. SEGATO T. P.; COLTRO W. K. T.; ALMEIDA A. L. J.; PIAZETTA M. H. O.; GOBBI A. L.; MAZO L. H.; CARRILHO E. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis, v. 31, n. 15, p. 2526-2533, 2010. SEGATO, Thiago Pinotti. Avanços no processo de fabricação de microdispositivos analíticos e em seu acoplamento com a detecção condutométrica sem contato. 2011. 60p. Tese (Doutorado em Química Analítica) - Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos. SEILER, K.; HARRISON, D. J.; MANZ, A. Planar glass chips for capillary electrophoresis - repetitive sample injection, quantitation, and separation efficiency Analytical Chemistry, v. 65, n. 10, p. 1481-1488, 1993. SHANG, T.; TENG, E.; WOOLLEY, A. T.; MAZZEO, B. A .; SCHULTZ, S. M.; HAWKINS, A. R. Contactless conductivity detection of small ions in a surface micro-machined CE chip. Electrophoresis, v. 31, n. 15, p. 2596-2601, 2010. SHIAVANTI, J. N. Sistemas de microcanais em vidro para aplicações em microfluídica. 2008. 121p. Dissertação (Mestre em Engenharia) – Departamento de Engenharia de Sistemas Eletrônicos, Universidade de São Paulo. SOLIGNAC, D.; GIJS, M.A.M. Pressure pulse injection: a powerful alternative to electrokinetc sample loading in electrophoresis microchips. Analytical Chemistry, v.75, n.7, p.1652-1657, 2003. SONG, Z.; XU, Y.; CHEN, Z.; YANG, J.; LI, X.; ZHANG, Z. Quantification of lactate in synovia by microchip with contactless conductivity detection. Analytical Biochemistry, v. 434, n. 1, p. 73–77, 2013. TAN, A.; RODGERS, K.; MURRIHY, J. P.; O’MATHUNA, C.; GLENNON, J. D. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Lab on Chip, v. 1, n. 1, p. 7-9, 2001. TANYANYIWA, J.; HAUSER, P. C. High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. Analytical Chemistry, v. 74, n. 24, p. 6378-6385, 2002. TANYANYIWA, J.; LEUTHARDT, S.; HAUSER, P. C. Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis. Electrophoresis, v. 23, n. 21, p. 3659–3666, 2002. TANYANYIWA, J.; ABAD-VILLAR, E. M.; FERNANDÉZ-ABEDUL, T.; COSTA-GARCÍA, A.; HOFFMAMN, W.; GUBER, A. E.; HERRMANN, D.; GERLACH, A.; GOTTSCHLICH, N.; HAUSER, P. C. High-voltage contactless conductivity-detection for lab-on-chip devices using external electrodes on the holder. Analyst, v. 128, n. 8, p. 1019-1023, 2003. TANYANYIWA, J.; HAUSER, P. C. Capillary and microchip electrophoresis of basic drugs with contactless conductivity detection. Electrophoresis, v. 25, n. 17, p. 3010-3016, 2004. TANYANYIWA, J.; ABAD-VILLAR, E. M.; HAUSER, P. C. Contactless conductivity detection of selected organic ions in on-chip electrophoresis. Electrophoresis, v. 25, n. 6, p. 903–908, 2004. TAVARES, M.F.M. Eletroforese capilar: conceitos básicos. Química Nova, v. 19, n. 2, p. 173-181, 1996. THOMAS, M.S.; CLIFT, J. M.; MILLARE, B.; VULLEV, V. I. Print-and-Peel Fabricated Passive Micromixers. Langmuir, v.26, n.4, p. 2951–2957, 2010. TŮMA, P.; SAMCOVA, E.; OPEKAR, F.; JURKA, V.; ŠTULÍK, K. Determination of 1-methylhistidine and 3-methylhistidine by capillary and chip electrophoresis with contactless conductivity detection. Electrophoresis, v. 28, n. 13, p. 2174–2180, 2007. VANDAVEER IV, W. R.; PASAS-FARMER, S. A.; FISCHER, D. J.; FRANKENFELD, C. N.; LUNTE, S. M. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis, v. 25, n. 21-22, p. 3528-3549, 2004. VÁZQUEZ, M.; FRANKENFELD, C.; COLTRO, W. K. T.; CARRILHO E.; DIAMOND, D.; LUNTE, S. M. Dual contactless conductivity and amperometric detection on hybrib PDMS/glass electrophoreis microchips. Analyst, v. 135, n. 1, p.96-103, 2010. VULLEV, V. I.; WAN, J.; HEINRICH, V.; LANDSMAN, P.; BOWER, P. E.; XIA, B.; MILLARE, B.; JONES, G. J. Nonlithographic Fabrication of Microfluidic Devices. American Chemical Society, v. 128, n. 50, p. 16062–16072, 2006. XU, J.; LOCASCIO, L.; GAITAN, M.; LEE, C.S. Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, v. 72, n.8, p. 1930-1933, 2000. XU, Y.; LIANG, J.; LIU, H. T.; HU, X. G.; WEN, Z. Y.; WU, Y. J.; CAO, M. X. Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip. Anal. Bioanal. Chemistry, v. 397, n. 4, p. 1583–1593, 2010. WANG, J.; PUMERA, M. Dual conductivity/amperometric detection system for microchip capillary electrophoresis. Analytical Chemistry, v. 74, n. 23, p. 5919-5923, 2002. WANG, J.; CHEN, G.; MUCK JR, A. Movable contactless-conductivity detector for microchip capillary electrophoresis. Analytical Chemistry, v. 75, n. 17, p. 4475-4479, 2003. WANG, J.; CHEN, G.; CHATRATHI, M. P.; WANG, M.; RINEHART, R.; MUCK JR, A. Screen-Printed Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Electroanalysis, v. 20, n. 22, p. 2416-2421, 2008. WANG, J.; CHEN, G.; MUCK JR, A. Wall-jet conductivity detector for microchip capillary electrophoresis. Talanta, v. 78, n. 1, p. 207–211, 2009. YANG, C. R.; CHEN, P. Y.; CHIOU, Y. C.; LEE. R. T.Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution. Sensors and Actuators A, v. 119, n. 1, p. 263–270, 2005. ZEMANN, A. J.; SCHNELL, E.; VOLGGER, D.; BONN, G. K. Contactless conductivity detection for capillary electrophoresis. Analytical Chemistry, v. 70, n. 3, p. 563-567, 1998. ZHANG, J.; TAN, K. L., GONG, H.Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polymer Testing, v. 20, n. 6, p. 693–701, 2001. ZHAO, J.; CHEN, Z.; LI, X.; PAN, J.A novel microchip based on indium tin oxide coated glass for contactless conductivity detection. Talanta, v. 85, n. 5, p. 2614–2619, 2011.

Page generated in 0.0202 seconds