Return to search

Detecção de Pedestres Utilizando Descritores de Orientação do Gradiente e Auto Similaridade de Cor

Made available in DSpace on 2018-08-02T00:01:02Z (GMT). No. of bitstreams: 1
tese_6469_Dissertação_final_Daniel_luis_Cosmos.pdf: 9906832 bytes, checksum: be08efcf829cde189c3b3f48f3aaa368 (MD5)
Previous issue date: 2014-11-06 / Detecção de pedestres é um problema muito abordado na atualidade, possuindo diversas
aplicações com potencial para melhorar a qualidade de vida da sociedade. Algumas dessas
aplicações se encontram nas áreas de sistemas de auxílio ao motorista, reconhecimento de
pessoas em fotos e vídeos, e vigilância. Atualmente existe um grande número de pesquisas
envolvendo este assunto, trazendo muitas ramificações ao estado da arte no que diz respeito
a detecção de pedestres. Esta dissertação apresenta um sistema de detecção de pedestres
em ambientes não controlados baseado em janelas deslizantes. Sistemas deste tipo são
compostos por dois blocos principais: um para a extração de características e outro para
classificação das janelas. Duas técnicas de extração de características são usadas, sendo elas:
HOG (Histogram of Oriented Gradient) e CSS (Color Self Similarities), e para classificar as
janelas é usado o SVM (Support Vector Machine) linear. Além dessas técnicas, são também
utilizadas: mean shift e agrupamento hierárquico, para a fusão de múltiplas detecções
sobrepostas; e filtro bilateral, para pré-processamento da imagem. Os resultados obtidos
sobre o banco de dados INRIA Person Database mostram que o sistema proposto, usando
somente o descritor HOG, apresenta melhorias em relação a sistemas semelhantes, com um
log average miss rate igual a 41,8%, contra 46% da literatura. Este resultado foi possível
devido ao corte das detecções finais para melhor adequação às anotações modificadas,
e também a algumas modificações feitas nos parâmetros dos descritores. A adição do
descritor CSS modificado ao HOG aumenta a eficácia do sistema, levando a um log average
miss rate igual a 36,2%, classificando separadamente cada descritor

Identiferoai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/9641
Date06 November 2014
CreatorsCOSMO, D. L.
ContributorsCIARELLI, P. M., Klaus Fabian Coco, LING, L. L., SALLES, E. O. T.
PublisherUniversidade Federal do Espírito Santo, Mestrado em Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, UFES, BR
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds