Spelling suggestions: "subject:"detecção dde pedestres"" "subject:"detecção dde pédestres""
1 |
Detecção de Pedestres Utilizando Descritores de Orientação do Gradiente e Auto Similaridade de CorCOSMO, D. L. 06 November 2014 (has links)
Made available in DSpace on 2018-08-02T00:01:02Z (GMT). No. of bitstreams: 1
tese_6469_Dissertação_final_Daniel_luis_Cosmos.pdf: 9906832 bytes, checksum: be08efcf829cde189c3b3f48f3aaa368 (MD5)
Previous issue date: 2014-11-06 / Detecção de pedestres é um problema muito abordado na atualidade, possuindo diversas
aplicações com potencial para melhorar a qualidade de vida da sociedade. Algumas dessas
aplicações se encontram nas áreas de sistemas de auxílio ao motorista, reconhecimento de
pessoas em fotos e vídeos, e vigilância. Atualmente existe um grande número de pesquisas
envolvendo este assunto, trazendo muitas ramificações ao estado da arte no que diz respeito
a detecção de pedestres. Esta dissertação apresenta um sistema de detecção de pedestres
em ambientes não controlados baseado em janelas deslizantes. Sistemas deste tipo são
compostos por dois blocos principais: um para a extração de características e outro para
classificação das janelas. Duas técnicas de extração de características são usadas, sendo elas:
HOG (Histogram of Oriented Gradient) e CSS (Color Self Similarities), e para classificar as
janelas é usado o SVM (Support Vector Machine) linear. Além dessas técnicas, são também
utilizadas: mean shift e agrupamento hierárquico, para a fusão de múltiplas detecções
sobrepostas; e filtro bilateral, para pré-processamento da imagem. Os resultados obtidos
sobre o banco de dados INRIA Person Database mostram que o sistema proposto, usando
somente o descritor HOG, apresenta melhorias em relação a sistemas semelhantes, com um
log average miss rate igual a 41,8%, contra 46% da literatura. Este resultado foi possível
devido ao corte das detecções finais para melhor adequação às anotações modificadas,
e também a algumas modificações feitas nos parâmetros dos descritores. A adição do
descritor CSS modificado ao HOG aumenta a eficácia do sistema, levando a um log average
miss rate igual a 36,2%, classificando separadamente cada descritor
|
2 |
Avaliação e proposta de sistemas de câmeras estéreo para detecção de pedestres em veículos inteligentes / Stereo cameras systems evaluation and proposal for pedestrian detection on intelligent vehiclesNakamura, Angelica Tiemi Mizuno 06 December 2017 (has links)
Detecção de pedestres é uma importante área em visão computacional com o potencial de salvar vidas quando aplicada em veículos. Porém, essa aplicação exige detecções em tempo real, com alta acurácia e menor quantidade de falsos positivos possível. Durante os últimos anos, diversas ideias foram exploradas e os métodos mais recentes que utilizam arquiteturas profundas de redes neurais possibilitaram um grande avanço nesta área, melhorando significativamente o desempenho das detecções. Apesar desse progresso, a detecção de pedestres que estão distantes do veículo continua sendo um grande desafio devido às suas pequenas escalas na imagem, sendo necessária a avaliação da eficácia dos métodos atuais em evitar ou atenuar a gravidade dos acidentes de trânsito que envolvam pedestres. Dessa forma, como primeira proposta deste trabalho, foi realizado um estudo para avaliar a aplicabilidade dos métodos estado-da-arte para evitar colisões em cenários urbanos. Para isso, a velocidade e dinâmica do veículo, o tempo de reação e desempenho dos métodos de detecção foram considerados. Através do estudo, observou-se que em ambientes de tráfego rápido ainda não é possível utilizar métodos visuais de detecção de pedestres para assistir o motorista, pois nenhum deles é capaz de detectar pedestres que estão distantes do veículo e, ao mesmo tempo, operar em tempo real. Mas, ao considerar apenas pedestres em maiores escalas, os métodos tradicionais baseados em janelas deslizantes já conseguem atingir um bom desempenho e rápida execução. Dessa forma, com a finalidade de restringir a operação dos detectores apenas para pedestres em maiores escalas e assim, possibilitar a aplicação de métodos visuais em veículos, foi proposta uma configuração de câmeras que possibilitou obter imagens para um maior intervalo de distância à frente do veículo com pedestres em resolução quase duas vezes maior em comparação à uma câmera comercial. Resultados experimentais mostraram considerável melhora no desempenho das detecções, possibilitando superar a dificuldade causada pelas pequenas escalas dos pedestres nas imagens. / Pedestrian detection is an important area in computer vision with the potential to save lives when applied on vehicles. This application requires accurate detections and real-time operation, keeping the number of false positives as minimal as possible. Over the past few years, several ideas were explored, including approaches with deep network architectures, which have reached considerably better performances. However, detecting pedestrians far from the camera is still challenging due to their small sizes on images, making it necessary to evaluate the effectiveness of existing approaches on avoiding or reducing traffic accidents that involves pedestrians. Thus, as the first proposal of this work, a study was done to verify the state-of-the-art methods applicability for collision avoidance in urban scenarios. For this, the speed and dynamics of the vehicle, the reaction time and performance of the detection methods were considered. The results from this study show that it is still not possible to use a vision-based pedestrian detector for driver assistance on urban roads with fast moving traffic, since none of them is able to handle real-time pedestrian detection. However, for large-scale pedestrians on images, methods based on sliding window approach can already perform reliably well with fast inference time. Thus, in order to restrict the operation of detectors only for pedestrians in larger scales and enable the application of vision-based methods in vehicles, it was proposed a camera setup that provided to get images for a larger range of distances in front of the vehicle with pedestrians resolution almost twice as large compared to a commercial camera. Experimental results reveal a considerable enhancement on detection performance, overcoming the difficulty caused by the reduced scales that far pedestrians have on images.
|
3 |
Avaliação e proposta de sistemas de câmeras estéreo para detecção de pedestres em veículos inteligentes / Stereo cameras systems evaluation and proposal for pedestrian detection on intelligent vehiclesAngelica Tiemi Mizuno Nakamura 06 December 2017 (has links)
Detecção de pedestres é uma importante área em visão computacional com o potencial de salvar vidas quando aplicada em veículos. Porém, essa aplicação exige detecções em tempo real, com alta acurácia e menor quantidade de falsos positivos possível. Durante os últimos anos, diversas ideias foram exploradas e os métodos mais recentes que utilizam arquiteturas profundas de redes neurais possibilitaram um grande avanço nesta área, melhorando significativamente o desempenho das detecções. Apesar desse progresso, a detecção de pedestres que estão distantes do veículo continua sendo um grande desafio devido às suas pequenas escalas na imagem, sendo necessária a avaliação da eficácia dos métodos atuais em evitar ou atenuar a gravidade dos acidentes de trânsito que envolvam pedestres. Dessa forma, como primeira proposta deste trabalho, foi realizado um estudo para avaliar a aplicabilidade dos métodos estado-da-arte para evitar colisões em cenários urbanos. Para isso, a velocidade e dinâmica do veículo, o tempo de reação e desempenho dos métodos de detecção foram considerados. Através do estudo, observou-se que em ambientes de tráfego rápido ainda não é possível utilizar métodos visuais de detecção de pedestres para assistir o motorista, pois nenhum deles é capaz de detectar pedestres que estão distantes do veículo e, ao mesmo tempo, operar em tempo real. Mas, ao considerar apenas pedestres em maiores escalas, os métodos tradicionais baseados em janelas deslizantes já conseguem atingir um bom desempenho e rápida execução. Dessa forma, com a finalidade de restringir a operação dos detectores apenas para pedestres em maiores escalas e assim, possibilitar a aplicação de métodos visuais em veículos, foi proposta uma configuração de câmeras que possibilitou obter imagens para um maior intervalo de distância à frente do veículo com pedestres em resolução quase duas vezes maior em comparação à uma câmera comercial. Resultados experimentais mostraram considerável melhora no desempenho das detecções, possibilitando superar a dificuldade causada pelas pequenas escalas dos pedestres nas imagens. / Pedestrian detection is an important area in computer vision with the potential to save lives when applied on vehicles. This application requires accurate detections and real-time operation, keeping the number of false positives as minimal as possible. Over the past few years, several ideas were explored, including approaches with deep network architectures, which have reached considerably better performances. However, detecting pedestrians far from the camera is still challenging due to their small sizes on images, making it necessary to evaluate the effectiveness of existing approaches on avoiding or reducing traffic accidents that involves pedestrians. Thus, as the first proposal of this work, a study was done to verify the state-of-the-art methods applicability for collision avoidance in urban scenarios. For this, the speed and dynamics of the vehicle, the reaction time and performance of the detection methods were considered. The results from this study show that it is still not possible to use a vision-based pedestrian detector for driver assistance on urban roads with fast moving traffic, since none of them is able to handle real-time pedestrian detection. However, for large-scale pedestrians on images, methods based on sliding window approach can already perform reliably well with fast inference time. Thus, in order to restrict the operation of detectors only for pedestrians in larger scales and enable the application of vision-based methods in vehicles, it was proposed a camera setup that provided to get images for a larger range of distances in front of the vehicle with pedestrians resolution almost twice as large compared to a commercial camera. Experimental results reveal a considerable enhancement on detection performance, overcoming the difficulty caused by the reduced scales that far pedestrians have on images.
|
4 |
Arquitetura multi-core reconfigurável para detecção de pedestres baseada em visão / Reconfigurable Multi-core Architecture for Vision-based Pedestrian DetectionHolanda, Jose Arnaldo Mascagni de 17 May 2017 (has links)
Dentre as diversas tecnologias de Assistência Avançada ao Condutor (ADAS) que têm sido adicionadas aos automóveis modernos estão os sistemas de detecção de pedestres. Tais sistemas utilizam sensores, como radares, lasers e câmeras de vídeo para captar informações do ambiente e evitar a colisão com pessoas no contexto do trânsito. Câmeras de vídeo têm se apresentado como um ótima opção para esses sistemas, devido ao relativo baixo custo e à riqueza de informações que capturam do ambiente. Muitas técnicas para detecção de pedestres baseadas em visão têm surgido nos últimos anos, tendo como característica a necessidade de um grande poder computacional para que se possa realizar o processamento das imagens em tempo real, de forma robusta, confiável e com baixa taxa de erros. Além disso, é necessário que sistemas que implementem essas técnicas tenham baixo consumo de energia, para que possam funcionar em um ambiente embarcado, como os automóveis. Uma tendência desses sistemas é o processamento de imagens de múltiplas câmeras presentes no veículo, de forma que o sistema consiga perceber potenciais perigos de colisão ao redor do veículo. Neste contexto, este trabalho aborda o coprojeto de hardware e software de uma arquitetura para detecção de pedestres, considerando a presença de quatro câmeras em um veículo (uma frontal, uma traseira e duas laterais). Com este propósito, utiliza-se a flexibilidade dos dispositivos FPGA para a exploração do espaço de projeto e a construção de uma arquitetura que forneça o desempenho necessário, o consumo de energia em níveis adequados e que também permita a adaptação a novos cenários e a evolução das técnicas de detecção de pedestres por meio da programabilidade. O desenvolvimento da arquitetura baseouse em dois algoritmos amplamente utilizados para detecção de pedestres, que são o Histogram of Oriented Gradients (HOG) e o Integral Channel Features (ICF). Ambos introduzem técnicas que servem como base para os algoritmos de detecção modernos. A arquitetura implementada permitiu a exploração de diferentes tipos de paralelismo das aplicações por meio do uso de múltiplos processadores softcore, bem como a aceleração de funções críticas por meio de implementações em hardware. Também foi demonstrada sua viabilidade no atendimento a um sistema contendo quatro câmeras de vídeo. / Among the several Advanced Driver Assistance (ADAS) technologies that have been added to modern vehicles are pedestrian detection systems. Those systems use sensors, such as radars, lasers, and video cameras to capture information from the environment and avoid collision with people in the context of traffic. Video cameras have become as a great option for such systems because of the relatively low cost and all of information they are able to capture from the environment. Many techniques for vison-based pedestrian detection have appeared in the last years, having as characteristic the necessity of a great computational power so that image can be processed in real time, in a robust and reliable way, and with low error rate. In addition, systems that implement these techniques require low power consumption, so they can operate in an embedded environment such as automobiles. A trend of these systems is the processing of images from multiple cameras mounted in vehicles, so that the system can detect potential collision hazards around the vehicle. In this context, this work addresses the hardware and software codesign of an architecture for pedestrian detection, considering the presence of four cameras in a vehicle (one in the front, one in the rear and two in the sides). For this purpose, the flexibility of FPGA devices is used for design space exploration and the construction of an architecture that provides the necessary performance, energy consumption at appropriate levels and also allows adaptation to new scenarios and evolution of pedestrian detection techniques through programmability. The development of the architecture was based on two algorithms widely used for pedestrian detection, which are Histogram of Oriented Gradients (HOG) and Integral Channel Features (ICF). Both introduce techniques that serve as the basis for modern detection algorithms. The implemented architecture allowed the exploration of different types of parallelism through the use of multiple softcore processors, as well as the acceleration of critical functions through implementations in hardware. It has also been demonstrated its feasibility in attending to a system containing four video cameras.
|
5 |
Arquitetura multi-core reconfigurável para detecção de pedestres baseada em visão / Reconfigurable Multi-core Architecture for Vision-based Pedestrian DetectionJose Arnaldo Mascagni de Holanda 17 May 2017 (has links)
Dentre as diversas tecnologias de Assistência Avançada ao Condutor (ADAS) que têm sido adicionadas aos automóveis modernos estão os sistemas de detecção de pedestres. Tais sistemas utilizam sensores, como radares, lasers e câmeras de vídeo para captar informações do ambiente e evitar a colisão com pessoas no contexto do trânsito. Câmeras de vídeo têm se apresentado como um ótima opção para esses sistemas, devido ao relativo baixo custo e à riqueza de informações que capturam do ambiente. Muitas técnicas para detecção de pedestres baseadas em visão têm surgido nos últimos anos, tendo como característica a necessidade de um grande poder computacional para que se possa realizar o processamento das imagens em tempo real, de forma robusta, confiável e com baixa taxa de erros. Além disso, é necessário que sistemas que implementem essas técnicas tenham baixo consumo de energia, para que possam funcionar em um ambiente embarcado, como os automóveis. Uma tendência desses sistemas é o processamento de imagens de múltiplas câmeras presentes no veículo, de forma que o sistema consiga perceber potenciais perigos de colisão ao redor do veículo. Neste contexto, este trabalho aborda o coprojeto de hardware e software de uma arquitetura para detecção de pedestres, considerando a presença de quatro câmeras em um veículo (uma frontal, uma traseira e duas laterais). Com este propósito, utiliza-se a flexibilidade dos dispositivos FPGA para a exploração do espaço de projeto e a construção de uma arquitetura que forneça o desempenho necessário, o consumo de energia em níveis adequados e que também permita a adaptação a novos cenários e a evolução das técnicas de detecção de pedestres por meio da programabilidade. O desenvolvimento da arquitetura baseouse em dois algoritmos amplamente utilizados para detecção de pedestres, que são o Histogram of Oriented Gradients (HOG) e o Integral Channel Features (ICF). Ambos introduzem técnicas que servem como base para os algoritmos de detecção modernos. A arquitetura implementada permitiu a exploração de diferentes tipos de paralelismo das aplicações por meio do uso de múltiplos processadores softcore, bem como a aceleração de funções críticas por meio de implementações em hardware. Também foi demonstrada sua viabilidade no atendimento a um sistema contendo quatro câmeras de vídeo. / Among the several Advanced Driver Assistance (ADAS) technologies that have been added to modern vehicles are pedestrian detection systems. Those systems use sensors, such as radars, lasers, and video cameras to capture information from the environment and avoid collision with people in the context of traffic. Video cameras have become as a great option for such systems because of the relatively low cost and all of information they are able to capture from the environment. Many techniques for vison-based pedestrian detection have appeared in the last years, having as characteristic the necessity of a great computational power so that image can be processed in real time, in a robust and reliable way, and with low error rate. In addition, systems that implement these techniques require low power consumption, so they can operate in an embedded environment such as automobiles. A trend of these systems is the processing of images from multiple cameras mounted in vehicles, so that the system can detect potential collision hazards around the vehicle. In this context, this work addresses the hardware and software codesign of an architecture for pedestrian detection, considering the presence of four cameras in a vehicle (one in the front, one in the rear and two in the sides). For this purpose, the flexibility of FPGA devices is used for design space exploration and the construction of an architecture that provides the necessary performance, energy consumption at appropriate levels and also allows adaptation to new scenarios and evolution of pedestrian detection techniques through programmability. The development of the architecture was based on two algorithms widely used for pedestrian detection, which are Histogram of Oriented Gradients (HOG) and Integral Channel Features (ICF). Both introduce techniques that serve as the basis for modern detection algorithms. The implemented architecture allowed the exploration of different types of parallelism through the use of multiple softcore processors, as well as the acceleration of critical functions through implementations in hardware. It has also been demonstrated its feasibility in attending to a system containing four video cameras.
|
Page generated in 0.083 seconds