• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 11
  • 11
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesa hidráulica móvel

Teixeira, Tiago Filipe Valente January 2009 (has links)
Tese de mestrado integrado. Engenharia Mecânica (Opção de Automação). Faculdade de Engenharia. Universidade do Porto. 2009
2

Uma contribuição ao desenvolvimento de sistemas baseados em visão estéreo para o auxílio a navegação de robôs móveis e veículos inteligentes / A contribution to the development of stereo vision based to aid the mobile robot navigation and intelligent vehicles

Fernandes, Leandro Carlos 04 December 2014 (has links)
Esta tese visa apresentar uma contribuição ao desenvolvimento de sistemas computacionais, baseados principalmente em visão computacional, usados para o auxílio a navegação de robôs móveis e veículos inteligentes. Inicialmente, buscou-se apresentar uma proposição de uma arquitetura de um sistema computacional para veículos inteligente que permita a construção de sistemas que sirvam tanto para o apoio ao motorista, auxiliando-o em sua forma de condução, quanto para o controle autônomo, proporcionando maior segurança e autonomia do tráfego de veículos em meio urbano, em rodovias e inclusive no meio rural. Esta arquitetura vem sendo aperfeiçoada e validada junto as plataformas CaRINA I e CaRINA II (Carro Robótico Inteligente para Navegação Autônoma), que também foram alvo de desenvolvimentos e pesquisas junto a esta tese, permitindo também a experimentação prática dos conceitos propostos nesta tese. Neste contexto do desenvolvimento de veículos inteligentes e autônomos, o uso de sensores para a percepção 3D do ambiente possui um papel muito importante, permitindo o desvio de obstáculos e navegação autônoma, onde a adoção de sensores de menor custo tem sido buscada a m de viabilizar aplicações comerciais. As câmeras estéreo são dispositivos que se enquadram nestes requisitos de custo e percepção 3D, destacando-se como sendo o foco da proposta de um novo método automático de calibração apresentado nesta tese. O método proposto permite estimar os parâmetros extrínsecos de um sistema de câmeras estéreo através de um processo evolutivo que considera apenas a coerência e a qualidade de alguns elementos do cenário quanto ao mapa de profundidade. Esta proposta apresenta uma forma original de calibração que permite a um usuário, sem grandes conhecimentos sobre visão estéreo, ajustar o sistema de câmeras para novas configurações e necessidades. O sistema proposto foi testado com imagens reais, obtendo resultados bastante promissores, se comparado aos métodos tradicionais de calibração de câmeras estéreo que fazem uso de um processo interativo de estimação dos parâmetros através da apresentação e uso de um padrão xadrez. Este método apresenta-se como uma abordagem promissora para realizar a fusão dos dados de câmeras e sensores, permitindo o ajuste das matrizes de transformação (parâmetros extrínsecos do sistema), a m de obter uma referência única onde são representados e agrupados os dados vindos dos diferentes sensores. / This thesis aims to provide a contribution to computer systems development based on computer vision used to aid the navigation of mobile robots and intelligent vehicles. Initially, we propose a computer system architecture for intelligent vehicles where intention is to support both the driver, helping him in driving way; and the autonomous control, providing greater security and autonomy of vehicular traffic in urban areas, on highways and even in rural areas. This architecture has been validated and improved with CaRINA I and CaRINA II platforms development, which were also subject of this thesis and allowed the practical experimentation of concepts proposed. In context of intelligent autonomous vehicles, the use of sensors that provides a 3D environment perception has a very important role to enable obstacle avoidance and autonomous navigation. Therefor the adoption of lower cost sensors have been sought in order to facilitate commercial applications. The stereo cameras are devices that fit these both requirements (cost and 3D perception), standing out as focus of the proposal for a new automatic calibration method presented in this thesis. The proposed method allows to estimate the extrinsic parameters of a stereo camera system through an evolutionary process that considers only the consistency and the quality of some elements of the scenario as to the depth map. This proposal presents a unique form of calibration that allows a user without much knowledge of stereo vision, adjust the camera system for new settings and needs. The system was tested with real images, obtaining very promising results as compared to traditional methods of calibration of stereo cameras that use an iterative process of parameter estimation through the presentation and use of a checkerboard pattern. This method offers a promising approach to achieve the fusion of the data from cameras and sensors, allowing adjustment of transformation matrices (extrinsic system parameters) in order to obtain a single reference in which they are grouped together and represented the data from the different sensors.
3

Detecção e rastreamento de obstáculos em ambientes urbanos utilizando visão estéreo / Detection and tracking of obstacles in urban environments using stereo vision

Ridel, Daniela Alves 30 June 2016 (has links)
Segundo relatório disponibilizado pela World Health Organization (WHO) (WHO, 2015), 1,3 milhões de pessoas morrem todos os anos no mundo devido à acidentes de trânsito. Veículos inteligentes se mostram como uma proeminente solução para reduzir esse drástico número. Por isso, diversos grupos de pesquisa no mundo têm concentrado esforços para o desenvolvimento de pesquisa que viabilize o desenvolvimento desse tipo de tecnologia. Diversos são os requisitos necessários para que um veículo possa circular de forma completamente autônoma. Localização, mapeamento, reconhecimento de semáforos e placas de trânsito são apenas alguns dentre tantos. Para que um veículo trafegue nas vias de forma segura, ele precisa saber onde estão os agentes que coabitam o mesmo espaço. Depois que esses agentes são detectados é necessário predizer suas movimentações de forma a reduzir os riscos de colisão. Neste projeto propôs-se a construção de um sistema que visa detectar agentes (obstáculos) e realizar o rastreamento deles para estimar suas velocidades e localizações enquanto estiverem no campo de visão do veículo autônomo, assim possibilitando realizar o cálculo da chance de colisão de cada um desses obstáculos com o veículo autônomo. O sistema utiliza unicamente a informação provida por uma câmera estereoscópica. Os pontos da cena são agrupados utilizando a informação da 24-vizinhança, disparidade e um valor que corresponde a chance de fazerem parte de um obstáculo. Após o agrupamento, cada grupo é dado como um possível obstáculo, após checar a consistência desses obstáculos por dois frames consecutivos, o grupo, agora considerado um obstáculo passa a ser rastreado utilizando filtro de Kalman (WELCH; BISHOP, 1995) e para checar a correspondência de obstáculos ao longo de toda a sequência é utilizado o algoritmo de Munkres (MUNKRES, 1957). A detecção e o rastreamento foram avaliados quantitativamente e qualitativamente utilizando dados coletados no Campus II da USP de São Carlos, bem como o conjunto de dados KITTI (GEIGER; LENZ; URTASUN, 2012). Os resultados demonstram a eficiência do algoritmo tanto na detecção dos obstáculos como no rastreamento dos mesmos. / According to a report provided by the WHO (World Health Organization) in 2015 (WHO, 2015), 1.3 million people die every year worldwide due to traffic accidents. Intelligent vehicles appear as a prominent solution to reduce this number. Many research groups in the world have been focussing efforts on the development of research in order to enable the development of such technology. There are several requirements for a vehicle be completely autonomous on the roads. Location, mapping, recognition of traffic lights and traffic signs are just a few among many. For safety the vehicle needs to detect all the other elements that are present in the same environment and to estimate their velocity in order to know where they are planning to go to avoid any kind of collision. This project proposes a system to detect obstacles and perform their tracking to estimate their speeds and locations enabling the calculation of the chance of collision of each of these obstacles with the autonomous vehicle. The system only uses the information provided by a stereoscopic camera. The points in the scene are clustered using the 24-neighborhood information, disparity and a value related to the chance of it being part of an obstacle. After the clustering, each cluster is considered a possible obstacle, when the consistence is checked in two frames the cluster becames an obstacle and starts being tracked using Kalman filter (WELCH; BISHOP, 1995), to match obstacles being tracked in the whole sequence the Munkres algorithm (MUNKRES, 1957) is used. The detection and tracking were evaluated qualitatively and quantitatively using data collected in the Campus II of USP in São Carlos and data from KITTI dataset (GEIGER; LENZ; URTASUN, 2012). The results show the algorithms efficiency in obstacle detection and tracking.
4

Uma contribuição ao desenvolvimento de sistemas baseados em visão estéreo para o auxílio a navegação de robôs móveis e veículos inteligentes / A contribution to the development of stereo vision based to aid the mobile robot navigation and intelligent vehicles

Leandro Carlos Fernandes 04 December 2014 (has links)
Esta tese visa apresentar uma contribuição ao desenvolvimento de sistemas computacionais, baseados principalmente em visão computacional, usados para o auxílio a navegação de robôs móveis e veículos inteligentes. Inicialmente, buscou-se apresentar uma proposição de uma arquitetura de um sistema computacional para veículos inteligente que permita a construção de sistemas que sirvam tanto para o apoio ao motorista, auxiliando-o em sua forma de condução, quanto para o controle autônomo, proporcionando maior segurança e autonomia do tráfego de veículos em meio urbano, em rodovias e inclusive no meio rural. Esta arquitetura vem sendo aperfeiçoada e validada junto as plataformas CaRINA I e CaRINA II (Carro Robótico Inteligente para Navegação Autônoma), que também foram alvo de desenvolvimentos e pesquisas junto a esta tese, permitindo também a experimentação prática dos conceitos propostos nesta tese. Neste contexto do desenvolvimento de veículos inteligentes e autônomos, o uso de sensores para a percepção 3D do ambiente possui um papel muito importante, permitindo o desvio de obstáculos e navegação autônoma, onde a adoção de sensores de menor custo tem sido buscada a m de viabilizar aplicações comerciais. As câmeras estéreo são dispositivos que se enquadram nestes requisitos de custo e percepção 3D, destacando-se como sendo o foco da proposta de um novo método automático de calibração apresentado nesta tese. O método proposto permite estimar os parâmetros extrínsecos de um sistema de câmeras estéreo através de um processo evolutivo que considera apenas a coerência e a qualidade de alguns elementos do cenário quanto ao mapa de profundidade. Esta proposta apresenta uma forma original de calibração que permite a um usuário, sem grandes conhecimentos sobre visão estéreo, ajustar o sistema de câmeras para novas configurações e necessidades. O sistema proposto foi testado com imagens reais, obtendo resultados bastante promissores, se comparado aos métodos tradicionais de calibração de câmeras estéreo que fazem uso de um processo interativo de estimação dos parâmetros através da apresentação e uso de um padrão xadrez. Este método apresenta-se como uma abordagem promissora para realizar a fusão dos dados de câmeras e sensores, permitindo o ajuste das matrizes de transformação (parâmetros extrínsecos do sistema), a m de obter uma referência única onde são representados e agrupados os dados vindos dos diferentes sensores. / This thesis aims to provide a contribution to computer systems development based on computer vision used to aid the navigation of mobile robots and intelligent vehicles. Initially, we propose a computer system architecture for intelligent vehicles where intention is to support both the driver, helping him in driving way; and the autonomous control, providing greater security and autonomy of vehicular traffic in urban areas, on highways and even in rural areas. This architecture has been validated and improved with CaRINA I and CaRINA II platforms development, which were also subject of this thesis and allowed the practical experimentation of concepts proposed. In context of intelligent autonomous vehicles, the use of sensors that provides a 3D environment perception has a very important role to enable obstacle avoidance and autonomous navigation. Therefor the adoption of lower cost sensors have been sought in order to facilitate commercial applications. The stereo cameras are devices that fit these both requirements (cost and 3D perception), standing out as focus of the proposal for a new automatic calibration method presented in this thesis. The proposed method allows to estimate the extrinsic parameters of a stereo camera system through an evolutionary process that considers only the consistency and the quality of some elements of the scenario as to the depth map. This proposal presents a unique form of calibration that allows a user without much knowledge of stereo vision, adjust the camera system for new settings and needs. The system was tested with real images, obtaining very promising results as compared to traditional methods of calibration of stereo cameras that use an iterative process of parameter estimation through the presentation and use of a checkerboard pattern. This method offers a promising approach to achieve the fusion of the data from cameras and sensors, allowing adjustment of transformation matrices (extrinsic system parameters) in order to obtain a single reference in which they are grouped together and represented the data from the different sensors.
5

Controlo autónomo de tráfego aéreo para veículos inteligentes utilizando o Microsoft Flight Simulator X

Sousa, Pedro Daniel Pereira Alves de January 2010 (has links)
Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 2010
6

Detecção e rastreamento de obstáculos em ambientes urbanos utilizando visão estéreo / Detection and tracking of obstacles in urban environments using stereo vision

Daniela Alves Ridel 30 June 2016 (has links)
Segundo relatório disponibilizado pela World Health Organization (WHO) (WHO, 2015), 1,3 milhões de pessoas morrem todos os anos no mundo devido à acidentes de trânsito. Veículos inteligentes se mostram como uma proeminente solução para reduzir esse drástico número. Por isso, diversos grupos de pesquisa no mundo têm concentrado esforços para o desenvolvimento de pesquisa que viabilize o desenvolvimento desse tipo de tecnologia. Diversos são os requisitos necessários para que um veículo possa circular de forma completamente autônoma. Localização, mapeamento, reconhecimento de semáforos e placas de trânsito são apenas alguns dentre tantos. Para que um veículo trafegue nas vias de forma segura, ele precisa saber onde estão os agentes que coabitam o mesmo espaço. Depois que esses agentes são detectados é necessário predizer suas movimentações de forma a reduzir os riscos de colisão. Neste projeto propôs-se a construção de um sistema que visa detectar agentes (obstáculos) e realizar o rastreamento deles para estimar suas velocidades e localizações enquanto estiverem no campo de visão do veículo autônomo, assim possibilitando realizar o cálculo da chance de colisão de cada um desses obstáculos com o veículo autônomo. O sistema utiliza unicamente a informação provida por uma câmera estereoscópica. Os pontos da cena são agrupados utilizando a informação da 24-vizinhança, disparidade e um valor que corresponde a chance de fazerem parte de um obstáculo. Após o agrupamento, cada grupo é dado como um possível obstáculo, após checar a consistência desses obstáculos por dois frames consecutivos, o grupo, agora considerado um obstáculo passa a ser rastreado utilizando filtro de Kalman (WELCH; BISHOP, 1995) e para checar a correspondência de obstáculos ao longo de toda a sequência é utilizado o algoritmo de Munkres (MUNKRES, 1957). A detecção e o rastreamento foram avaliados quantitativamente e qualitativamente utilizando dados coletados no Campus II da USP de São Carlos, bem como o conjunto de dados KITTI (GEIGER; LENZ; URTASUN, 2012). Os resultados demonstram a eficiência do algoritmo tanto na detecção dos obstáculos como no rastreamento dos mesmos. / According to a report provided by the WHO (World Health Organization) in 2015 (WHO, 2015), 1.3 million people die every year worldwide due to traffic accidents. Intelligent vehicles appear as a prominent solution to reduce this number. Many research groups in the world have been focussing efforts on the development of research in order to enable the development of such technology. There are several requirements for a vehicle be completely autonomous on the roads. Location, mapping, recognition of traffic lights and traffic signs are just a few among many. For safety the vehicle needs to detect all the other elements that are present in the same environment and to estimate their velocity in order to know where they are planning to go to avoid any kind of collision. This project proposes a system to detect obstacles and perform their tracking to estimate their speeds and locations enabling the calculation of the chance of collision of each of these obstacles with the autonomous vehicle. The system only uses the information provided by a stereoscopic camera. The points in the scene are clustered using the 24-neighborhood information, disparity and a value related to the chance of it being part of an obstacle. After the clustering, each cluster is considered a possible obstacle, when the consistence is checked in two frames the cluster becames an obstacle and starts being tracked using Kalman filter (WELCH; BISHOP, 1995), to match obstacles being tracked in the whole sequence the Munkres algorithm (MUNKRES, 1957) is used. The detection and tracking were evaluated qualitatively and quantitatively using data collected in the Campus II of USP in São Carlos and data from KITTI dataset (GEIGER; LENZ; URTASUN, 2012). The results show the algorithms efficiency in obstacle detection and tracking.
7

Avaliação e proposta de sistemas de câmeras estéreo para detecção de pedestres em veículos inteligentes / Stereo cameras systems evaluation and proposal for pedestrian detection on intelligent vehicles

Nakamura, Angelica Tiemi Mizuno 06 December 2017 (has links)
Detecção de pedestres é uma importante área em visão computacional com o potencial de salvar vidas quando aplicada em veículos. Porém, essa aplicação exige detecções em tempo real, com alta acurácia e menor quantidade de falsos positivos possível. Durante os últimos anos, diversas ideias foram exploradas e os métodos mais recentes que utilizam arquiteturas profundas de redes neurais possibilitaram um grande avanço nesta área, melhorando significativamente o desempenho das detecções. Apesar desse progresso, a detecção de pedestres que estão distantes do veículo continua sendo um grande desafio devido às suas pequenas escalas na imagem, sendo necessária a avaliação da eficácia dos métodos atuais em evitar ou atenuar a gravidade dos acidentes de trânsito que envolvam pedestres. Dessa forma, como primeira proposta deste trabalho, foi realizado um estudo para avaliar a aplicabilidade dos métodos estado-da-arte para evitar colisões em cenários urbanos. Para isso, a velocidade e dinâmica do veículo, o tempo de reação e desempenho dos métodos de detecção foram considerados. Através do estudo, observou-se que em ambientes de tráfego rápido ainda não é possível utilizar métodos visuais de detecção de pedestres para assistir o motorista, pois nenhum deles é capaz de detectar pedestres que estão distantes do veículo e, ao mesmo tempo, operar em tempo real. Mas, ao considerar apenas pedestres em maiores escalas, os métodos tradicionais baseados em janelas deslizantes já conseguem atingir um bom desempenho e rápida execução. Dessa forma, com a finalidade de restringir a operação dos detectores apenas para pedestres em maiores escalas e assim, possibilitar a aplicação de métodos visuais em veículos, foi proposta uma configuração de câmeras que possibilitou obter imagens para um maior intervalo de distância à frente do veículo com pedestres em resolução quase duas vezes maior em comparação à uma câmera comercial. Resultados experimentais mostraram considerável melhora no desempenho das detecções, possibilitando superar a dificuldade causada pelas pequenas escalas dos pedestres nas imagens. / Pedestrian detection is an important area in computer vision with the potential to save lives when applied on vehicles. This application requires accurate detections and real-time operation, keeping the number of false positives as minimal as possible. Over the past few years, several ideas were explored, including approaches with deep network architectures, which have reached considerably better performances. However, detecting pedestrians far from the camera is still challenging due to their small sizes on images, making it necessary to evaluate the effectiveness of existing approaches on avoiding or reducing traffic accidents that involves pedestrians. Thus, as the first proposal of this work, a study was done to verify the state-of-the-art methods applicability for collision avoidance in urban scenarios. For this, the speed and dynamics of the vehicle, the reaction time and performance of the detection methods were considered. The results from this study show that it is still not possible to use a vision-based pedestrian detector for driver assistance on urban roads with fast moving traffic, since none of them is able to handle real-time pedestrian detection. However, for large-scale pedestrians on images, methods based on sliding window approach can already perform reliably well with fast inference time. Thus, in order to restrict the operation of detectors only for pedestrians in larger scales and enable the application of vision-based methods in vehicles, it was proposed a camera setup that provided to get images for a larger range of distances in front of the vehicle with pedestrians resolution almost twice as large compared to a commercial camera. Experimental results reveal a considerable enhancement on detection performance, overcoming the difficulty caused by the reduced scales that far pedestrians have on images.
8

Estimação de obstáculos e área de pista com pontos 3D esparsos / Estimation of obstacles and road area with sparse 3D points

Shinzato, Patrick Yuri 26 March 2015 (has links)
De acordo com a Organização Mundial da Saúde,cerca de 1,2milhões de pessoas no mundo morrem em acidentes de trânsito. Sistemas de assistência ao motorista e veículos autônomos podem diminuir o número de acidentes. Dentre as várias demandas existentes para viabilizar essa tecnologia, sistemas computacionais de percepção ainda permanecem sem uma solução definitiva. Dois deles, detecção de obstáculos e de via navegável, normalmente fazem uso de algoritmos sofisticados como técnicas de aprendizado supervisionado, que mostram resultados impressionantes quando treinados com bases de dados bem definidas e diversificadas.Entretanto, construir, manter e atualizar uma base de dados com exemplos de vários lugares do mundo e em diversas situações é trabalhoso e complexo. Assim, métodos adaptativos e auto-supervisionados mostram-se como boas alternativas para sistemas de detecção do futuro próximo. Neste contexto, esta tese apresenta um método para estimar obstáculose via navegável através de sensores de baixo custo (câmeras estereoscópicas), sem o uso de técnicas de aprendizado de máquina e de diversas suposições normalmente utilizadas por trabalhos já disponíveis na literatura. Esses métodos utilizando sensor estereoscópico foram comparados fazendo uso de sensores do tipo 3D-LIDAR e mostraram resultados semelhantes. Este sistema poderá ser usado como uma fase pré-processamento de dados para melhorar ou viabilizar métodos adaptativos de aprendizado. / World wide, an estimated 1.2million lives are lostin road crashes each year and Advanced Driver Assistance Systems (ADAS) and Self-driving cars promise to reduce this number. Among the various issues to complete this technology, perception systems are still an unsolved issues. Normally two of them, obstacle detection and road detection, make use of sophisticated algorithms such as supervised machine learning methods which can perform with impressive results if it was trained with good data sets. Since it is a complex and an expensive job to create and maintain data bases of scenarios from the entire world, adaptive and/or self-supervised methods are good candidates for detection systems in the near future. Due that, this thesis present a method to estimate obsta- cles and estimate the road terrain using low cost sensors (stereo camera), avoiding supervised machine learning techniques and the most common assumptions used by works presented in literature. These methods were compared with 3D-LIDAR approaches achieving similar results and thus it can be used as a pre-processing step to improve or allow adaptive methods with machine learning systems.
9

Avaliação e proposta de sistemas de câmeras estéreo para detecção de pedestres em veículos inteligentes / Stereo cameras systems evaluation and proposal for pedestrian detection on intelligent vehicles

Angelica Tiemi Mizuno Nakamura 06 December 2017 (has links)
Detecção de pedestres é uma importante área em visão computacional com o potencial de salvar vidas quando aplicada em veículos. Porém, essa aplicação exige detecções em tempo real, com alta acurácia e menor quantidade de falsos positivos possível. Durante os últimos anos, diversas ideias foram exploradas e os métodos mais recentes que utilizam arquiteturas profundas de redes neurais possibilitaram um grande avanço nesta área, melhorando significativamente o desempenho das detecções. Apesar desse progresso, a detecção de pedestres que estão distantes do veículo continua sendo um grande desafio devido às suas pequenas escalas na imagem, sendo necessária a avaliação da eficácia dos métodos atuais em evitar ou atenuar a gravidade dos acidentes de trânsito que envolvam pedestres. Dessa forma, como primeira proposta deste trabalho, foi realizado um estudo para avaliar a aplicabilidade dos métodos estado-da-arte para evitar colisões em cenários urbanos. Para isso, a velocidade e dinâmica do veículo, o tempo de reação e desempenho dos métodos de detecção foram considerados. Através do estudo, observou-se que em ambientes de tráfego rápido ainda não é possível utilizar métodos visuais de detecção de pedestres para assistir o motorista, pois nenhum deles é capaz de detectar pedestres que estão distantes do veículo e, ao mesmo tempo, operar em tempo real. Mas, ao considerar apenas pedestres em maiores escalas, os métodos tradicionais baseados em janelas deslizantes já conseguem atingir um bom desempenho e rápida execução. Dessa forma, com a finalidade de restringir a operação dos detectores apenas para pedestres em maiores escalas e assim, possibilitar a aplicação de métodos visuais em veículos, foi proposta uma configuração de câmeras que possibilitou obter imagens para um maior intervalo de distância à frente do veículo com pedestres em resolução quase duas vezes maior em comparação à uma câmera comercial. Resultados experimentais mostraram considerável melhora no desempenho das detecções, possibilitando superar a dificuldade causada pelas pequenas escalas dos pedestres nas imagens. / Pedestrian detection is an important area in computer vision with the potential to save lives when applied on vehicles. This application requires accurate detections and real-time operation, keeping the number of false positives as minimal as possible. Over the past few years, several ideas were explored, including approaches with deep network architectures, which have reached considerably better performances. However, detecting pedestrians far from the camera is still challenging due to their small sizes on images, making it necessary to evaluate the effectiveness of existing approaches on avoiding or reducing traffic accidents that involves pedestrians. Thus, as the first proposal of this work, a study was done to verify the state-of-the-art methods applicability for collision avoidance in urban scenarios. For this, the speed and dynamics of the vehicle, the reaction time and performance of the detection methods were considered. The results from this study show that it is still not possible to use a vision-based pedestrian detector for driver assistance on urban roads with fast moving traffic, since none of them is able to handle real-time pedestrian detection. However, for large-scale pedestrians on images, methods based on sliding window approach can already perform reliably well with fast inference time. Thus, in order to restrict the operation of detectors only for pedestrians in larger scales and enable the application of vision-based methods in vehicles, it was proposed a camera setup that provided to get images for a larger range of distances in front of the vehicle with pedestrians resolution almost twice as large compared to a commercial camera. Experimental results reveal a considerable enhancement on detection performance, overcoming the difficulty caused by the reduced scales that far pedestrians have on images.
10

Estimação de obstáculos e área de pista com pontos 3D esparsos / Estimation of obstacles and road area with sparse 3D points

Patrick Yuri Shinzato 26 March 2015 (has links)
De acordo com a Organização Mundial da Saúde,cerca de 1,2milhões de pessoas no mundo morrem em acidentes de trânsito. Sistemas de assistência ao motorista e veículos autônomos podem diminuir o número de acidentes. Dentre as várias demandas existentes para viabilizar essa tecnologia, sistemas computacionais de percepção ainda permanecem sem uma solução definitiva. Dois deles, detecção de obstáculos e de via navegável, normalmente fazem uso de algoritmos sofisticados como técnicas de aprendizado supervisionado, que mostram resultados impressionantes quando treinados com bases de dados bem definidas e diversificadas.Entretanto, construir, manter e atualizar uma base de dados com exemplos de vários lugares do mundo e em diversas situações é trabalhoso e complexo. Assim, métodos adaptativos e auto-supervisionados mostram-se como boas alternativas para sistemas de detecção do futuro próximo. Neste contexto, esta tese apresenta um método para estimar obstáculose via navegável através de sensores de baixo custo (câmeras estereoscópicas), sem o uso de técnicas de aprendizado de máquina e de diversas suposições normalmente utilizadas por trabalhos já disponíveis na literatura. Esses métodos utilizando sensor estereoscópico foram comparados fazendo uso de sensores do tipo 3D-LIDAR e mostraram resultados semelhantes. Este sistema poderá ser usado como uma fase pré-processamento de dados para melhorar ou viabilizar métodos adaptativos de aprendizado. / World wide, an estimated 1.2million lives are lostin road crashes each year and Advanced Driver Assistance Systems (ADAS) and Self-driving cars promise to reduce this number. Among the various issues to complete this technology, perception systems are still an unsolved issues. Normally two of them, obstacle detection and road detection, make use of sophisticated algorithms such as supervised machine learning methods which can perform with impressive results if it was trained with good data sets. Since it is a complex and an expensive job to create and maintain data bases of scenarios from the entire world, adaptive and/or self-supervised methods are good candidates for detection systems in the near future. Due that, this thesis present a method to estimate obsta- cles and estimate the road terrain using low cost sensors (stereo camera), avoiding supervised machine learning techniques and the most common assumptions used by works presented in literature. These methods were compared with 3D-LIDAR approaches achieving similar results and thus it can be used as a pre-processing step to improve or allow adaptive methods with machine learning systems.

Page generated in 0.0796 seconds