Orientador: Anderson de Rezende Rocha / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-23T17:47:21Z (GMT). No. of bitstreams: 1
Pires_Ramon_M.pdf: 4429324 bytes, checksum: 4e4015bc2131a1f1a5e8aa215f24d98f (MD5)
Previous issue date: 2013 / Resumo: A Retinopatia Diabética (RD), complicação provocada pela diabetes, se manifesta por meio de diferentes lesões que possuem suas especificidades. Estas especificidades são exploradas na literatura como estratégia para representação, proporcionando uma discriminação satisfatória entre imagens de pacientes normais e doentes. No entanto, por estarem fortemente atrelada _as características visuais de cada anomalia, a detecção de lesões distintas exige abordagens distintas. Neste trabalho, apresentamos um arcabouço geral cujo objetivo é automatizar o procedimento de análise de imagens de fundo de olho. O trabalho é dividido em quatro etapas: avaliação de qualidade, detecção de lesões individuais, triagem e verificação de necessidade de consulta. Na primeira etapa, aplicamos diferentes técnicas de caracterização de imagens para avaliar a qualidade das imagens por meio de dois critérios: definição de campo e detecção de borramentos. Na segunda etapa deste trabalho, propomos a continuação de um trabalho anterior desenvolvido pelo nosso grupo, no qual foi aplicado um método unificado na tentativa de detecção de lesões distintas. No nosso método para detecção de qualquer lesão, exploramos diferentes alternativas de representação em baixo nível (extração densa e esparsa) e médio nível (técnicas de coding/pooling para sacolas de palavras visuais) objetivando o desenvolvimento de um conjunto eficaz de detectores de lesões individuais. As pontuações provenientes de cada detector de lesão, obtidas para cada imagem, representam uma descrição de alto nível, ponto fundamental para a terceira e a quarta etapas. Tendo em mãos um conjunto de dados descritos em alto nível (pontuações dos detectores individuais), propomos, na terceira etapa do trabalho, a aplicação de técnicas de fusão de dados para o desenvolvimento de um método de detecção de múltiplas lesões. A descrição em alto nível também é explorada na quarta etapa para o desenvolvimento de um método eficaz de avaliação de necessidade de encaminhamento a um oftalmologista no intervalo de um ano, visando evitar que o médico seja sobrecarregado, bem como dar prioridade a pacientes em estado urgente / Abstract: Diabetic Retinopathy (DR), a common complication caused by diabetes, manifests through deferent lesions that have their particularities. These particularities are explored in the literature as methods for representation, providing a satisfactory discrimination between healthy/diseased retinas. However, by being strongly linked to the visual characteristics of each anomaly, the detection of distinct lesions requires distinct approaches. In this work, we present a general framework whose objective is to automate the eye-fundus image analysis. The work comprises four steps: image quality assessment, DR-related lesion detection, screening, and referral. In the first step, we apply characterization techniques to assess image quality by two criteria: field definition and blur detection. In the second step of this work, we extend up a previous work of our group which explored a unified method for detecting distinct lesions in eye-fundus images. In our approach for detection of any lesion, we explore several alternatives for low-level (dense and sparse extraction) and mid-level (coding/pooling techniques of bag of visual words) representations, aiming at the development of an effective set of individual DR-related lesion detectors. The scores derived from each individual DR-related lesion, taken for each image, represent a high-level description, fundamental point for the third and fourth steps. Given a dataset described in high-level (scores from the individual detectors), we propose, in the third step of the work, the use of machine learning fusion techniques aiming at the development of a multi-lesion detection method. The high-level description is also explored in the fourth step for the development of an effective method for evaluating the necessity of referral of a patient to an ophthalmologist in the interval of one year, avoiding overloading medical specialist with simple cases as well as give priority to patients in an urgent state / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/275614 |
Date | 23 August 2018 |
Creators | Pires, Ramon, 1989- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Rocha, Anderson de Rezende, 1980-, Traina, Agma Juci Machado, Pedrini, Hélio |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação |
Source Sets | IBICT Brazilian ETDs |
Language | Inglês |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 94 p. : il., application/octet-stream |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds