Return to search

Estimação e diagnóstico na distribuição exponencial por partes em análise de sobrevivência com fração de cura / Estimation and diagnostics for the piecewise exponential distribution in survival analysis with fraction cure

O principal objetivo deste trabalho é desenvolver procedimentos inferências em uma perspectiva bayesiana para modelos de sobrevivência com (ou sem) fração de cura baseada na distribuição exponencial por partes. A metodologia bayesiana é baseada em métodos de Monte Carlo via Cadeias de Markov (MCMC). Para detectar observações influentes nos modelos considerados foi usado o método bayesiano de análise de influência caso a caso (Cho et al., 2009), baseados na divergência de Kullback-Leibler. Além disso, propomos o modelo destrutivo binomial negativo com fração de cura. O modelo proposto é mais geral que os modelos de sobrevivência com fração de cura, já que permitem estimar a probabilidade do número de causas que não foram eliminadas por um tratamento inicial / The main objective is to develop procedures inferences in a bayesian perspective for survival models with (or without) the cure rate based on piecewise exponential distribution. The methodology is based on bayesian methods for Markov Chain Monte Carlo (MCMC). To detect influential observations in the models considering bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence (Cho et al., 2009). Furthermore, we propose the negative binomial model destructive cure rate. The proposed model is more general than the survival models with cure rate, since the probability to estimate the number of cases which were not eliminated by an initial treatment

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09062011-151222
Date31 March 2011
CreatorsSibim, Alessandra Cristiane
ContributorsCancho, Vicente Garibay
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds