Return to search

Diferenciabilidade em espaços de Hilbert de reprodução sobre a esfera / Differentiability in reproducing Kernel Hilbert space on the sphere

Um espaço de Hilbert de reprodução (EHR) é um espaço de Hilbert de funções construído de maneira específica e única a partir de um núcleo positivo definido. As funções do EHR tem a seguinte peculiaridade: seus valores podem ser reproduzidos através de uma operação elementar envolvendo a própria função, o núcleo gerador e o produto interno do espaço. Neste trabalho, consideramos EHR gerados por núcleos positivos definidos sobre a esfera unitária m-dimensional usual. Analisamos quais propriedades são herdadas pelos elementos do espaço, quando o núcleo gerador possui alguma hipótese de diferenciabilidade. A análise é elaborada em duas frentes: com a noção de diferenciabilidade usual sobre a esfera e com uma noção de diferenciabilidade definida por uma operação multiplicativa genérica. Esta última inclui como caso particular as derivadas fracionárias e a derivada forte de Laplace-Beltrami. Em cada um dos casos consideramos ainda propriedades específicas do mergulho do EHR em espaços de funções suaves definidos pela diferenciabilidade utilizada / A reproducing kernel Hilbert space (EHR) is a Hilbert space of functions constructed in a unique manner from a fixed positive definite generating kernel. The values of a function in a reproducing kernel Hilbert space can be reproduced through an elementary operation involving the function itself, the generating kernel and the inner product of the space. In this work, we consider reproducing kernel Hilbert spaces generated by a positive definite kernel on the usual m-dimensional sphere. The main goal is to analyze differentiability properties inherited by the functions in the space when the generating kernel carries a differentiability assumption. That is done in two different cases: using the usual notion of differentiability on the sphere and using another one defined through multiplicative operators. The second case includes the Laplace-Beltrami derivative and fractional derivatives as well. In both cases we consider specific properties of the embeddings of the reproducing kernel Hilbert space into spaces of smooth functions induced by notion of differentiability used

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29032012-103159
Date02 March 2012
CreatorsThaís Jordão
ContributorsValdir Antonio Menegatto, Cleonice Fatima Bracciali, Ana Paula Peron, Fernando Rodrigo Rafaeli, Eduardo Brandani da Silva
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds