Return to search

Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple

Cette thèse porte sur l'analyse mathématique et la simulation numérique de problèmes liés à la diffraction multiple. Elle est constituée de deux parties. La première partie est consacrée à l'étude de quelques problèmes inverses de détection et de localisation d'obstacles ou de sources à l'aide d'un miroir à retournement temporel (MRT). Ces appareils sont capables de rétro-propager des ondes dans leur milieu d'origine afin de les focaliser sur la source qui les a initialement émises. Dans un premier temps, nous nous intéressons à la méthode DORT, qui est une technique expérimentale permettant de focaliser sélectivement des ondes sur des petits obstacles a priori inconnus. Dans le cadre de l'acoustique, nous proposons une étude numérique des résultats mathématiques obtenus par C. Hazard et K. Ramdani. Ensuite, nous étendons mathématiquement ces résultats au cas de l'électromagnétisme. Pour clôturer cette première partie, nous présentons une étude numérique d'une expérience de reconstruction d'une source acoustique ponctuelle à l'aide d'un MRT. On s'intéresse ici plus particulièrement au phénomène de super-résolution, c'est-à-dire l'amélioration, en moyenne, de la qualité de la focalisation en milieu hétérogène plutôt qu'en milieu homogène. En se plaçant dans un contexte déterministe, nous résolvons numériquement l'équation de Helmholtz et donnons des exemples de simulations numériques illustrant ce phénomène. La deuxième partie a pour objet la résolution numérique par équations intégrales du problème de diffraction multiple en acoustique. La notion de diffraction multiple signifie ici que le milieu comporte plusieurs obstacles par opposition à la diffraction simple où seul un diffuseur est présent. Lorsque les obstacles sont des disques, nous calculons explicitement les coefficients des quatre opérateurs intégraux usuels dans les bases de Fourier. Ceci nous permet de proposer une méthode de résolution numérique robuste et efficace lorsque les obstacles sont des disques. Cette stratégie de résolution utilise une méthode de stockage compressée de la matrice du système linéaire ainsi qu'un préconditionneur qui prend en compte les effets de la diffraction simple. En outre, ce préconditionnement présente la propriété intéressante de rendre toutes les équations intégrales identiques, à un changement de base près. Nous démontrons ce résultat tout d'abord pour des obstacles circulaires avant de l'étendre à des géométries régulières quelconques. D'autre part, l'obtention des coefficients de l'opérateur intégral de simple couche nous permet d'étudier numériquement le spectre de cet opérateur en régime basse fréquence. Après une étude de la diffraction simple, nous nous sommes intéressés à deux régimes particuliers de diffraction multiple : un milieu dilué où les obstacles sont éloignés et un milieu dense où les obstacles sont très proches les uns des autres.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00651312
Date20 September 2011
CreatorsThierry, Bertrand
PublisherUniversité Henri Poincaré - Nancy I
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds