Return to search

Théorie KAM faible et instabilité pour familles d'hamiltoniens

Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé 'polysystème'. Motivés par des questions liées au phénomène de la diffusion d'Arnold, notre objectif est de construire des trajectoires du polysystème qui relient deux régions lointaines de l'espace des phases. La thèse est divisée en trois parties.Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés d'une famille d'Hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie KAM faible, nous donnons des conditions suffisantes pour l'existence des trajectoires souhaitées.Dans la deuxième partie, nous traitons le cas d'un polysystème engendré par un couple de flots Hamiltoniens à temps continu, dont l'étude rentre dans le cadre de la théorie géométrique du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d'un polysystème générique, à l'aide du théorème de transversalité de Thom.La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de transversalité de Thom s'exprimant en termes d'ensembles rectifiables de codimension positive. Dans cette partie il n'est pas question de polysystèmes, ni d'Hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés dans la deuxième partie de la thèse

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00867687
Date11 March 2013
CreatorsMandorino, Vito
PublisherUniversité Paris Dauphine - Paris IX
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds