Return to search

Mesure interférométrique de phase et application à la combinaison cohérente d’un grand nombre de fibres amplificatrices / Interferometric phase measurement and its application for coherent fiber beam combining of a large number of amplifiers

Les propriétés intrinsèques des fibres amplificatrices telles que leur robustesse, leur efficacité, leur qualité de faisceau ou encore leur compacité ou leur bonne gestion thermique, en font un candidat idéal pour le développement de sources lasers de haute puissance, capables de rivaliser aujourd’hui avec les lasers solides. Les applications de ces sources avec de fortes puissances sont nombreuses : l’industrie (usinage, marquage), la défense (télémétrie, imagerie), la physique des particules. Dans ce dernier cas, des sources ultra-brèves et ultra-intenses permettent d’envisager de nouvelles applications telles que la proton-thérapie ou bien le remplacement des synchrotrons actuels par des architectures moins encombrantes et ayant un rendement plus important. Ce travail de thèse s’est déroulé dans le contexte du projet ICAN qui vise à étudier l’architecture de ces nouvelles sources.La combinaison cohérente de plusieurs amplificateurs fibrés en parallèle permet d’augmenter la puissance de ces sources. Pour atteindre les énergies visées dans le projet ICAN, la combinaison cohérente de 10 000 fibres doit être envisagée. L’objectif de cette thèse est de développer des techniques de contrôle de la phase compatibles avec un très grand nombre de fibres, pour leur application aux lasers ultra-intenses nécessaires à la physique des particules.Deux architectures de combinaison cohérente basées sur une mesure de phase interférométrique ont été réalisées dans cette thèse. La première, basé sur l’holographie numérique, permet un contrôle de la phase sans aucun calcul, collectif tant au niveau de la mesure que de la correction. La seconde architecture possède un contrôle actif de phase basé sur un algorithme de traitement d’images et elle a une bande passante compatible avec le spectre de bruit des amplificateurs. La combinaison cohérente de 16 fibres à 1kHz avec une erreur résiduelle de phase de λ/60mrs a été démontrée. La compatibilité de ces deux architectures avec 10 000 fibres a été étudiée et nous avons apporté quelques éléments pour la combinaison cohérente d’un très grand nombre de fibres. / The intrinsic properties of optical fibers like robustness, efficiency, beam quality, compactness and good thermal management can now compete with solid state lasers to develop high power laser sources. The applications of such sources include industry (machining, marking), defense (telemetry, lidar), and fundamental research. In this case, high intensity lasers are compulsory to produce the next generation of particles accelerators more efficient and more compact, both for fundamental research and its direct applications such as proton therapy. This work was done in the context of the ICAN project, which studies the feasibility of such sources.To overcome the limitations in terms of power of a single amplified fiber, an idea is to use several fiber lasers and to combine them coherently. To reach the ultra-high peak power and high average power requirements for these applications, the coherent beam combining of 10,000 fiber amplifiers has to be envisaged. The goal of the work is to develop a scheme of phase control scalable to a high number of combined fibers.Two schemes based on an interferometric phase measurement are realized in this work. The fist scheme, based on digital holography, permits a collective phase measurement and correction without calculation. The second scheme is based on an active phase control with individual phase modulators. This control requires an image processing algorithm and has a bandwidth compatible with the phase spectral noise of the amplifiers. The coherent combining of 16 fibers at 1kHz with a residual phase shift error of λ/60rms is achieved in this case. We use this second scheme to evaluate its scalability. We show that the coherent combining of 10,000 fibers using off-the-shelf components is already possible.

Identiferoai:union.ndltd.org:theses.fr/2014PA112334
Date17 November 2014
CreatorsAntier-Murgey, Marie
ContributorsParis 11, Primot, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0015 seconds