• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 37
  • 37
  • 16
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoparticle doping for improved Er-doped fiber lasers

Baker, Colin C., Friebele, E. Joseph, Askins, Charles G., Hunt, Michael P., Marcheschi, Barbara A., Fontana, Jake, Peele, John R., Kim, Woohong, Sanghera, Jasbinder, Zhang, Jun, Pattnaik, Radha K., Merkle, Larry D., Dubinskii, Mark, Chen, Youming, Dajani, Iyad A., Mart, Cody 16 March 2016 (has links)
A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of similar to 1x 10(-11) m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.
2

Multimode Interference in Optical Fibers and Its Applications in Fiber Lasers and Amplifiers

Zhu, Xiushan January 2008 (has links)
Multimode interference (MMI) in optical fibers has been studied and its applications in optical fiber lasers and amplifiers have been proposed and demonstrated in this thesis. When a single-mode fiber is spliced onto a multimode fiber, quasi-reproduction of the field from the single-mode fiber, also called “self-imaging”, occurs periodically along the multimode fiber where the phase differences between the strongly excited modes are very small. The properties of self-imaging in multimode optical fibers have been investigated experimentally and theoretically in this thesis. Key parameters for the design of MMI-based fiber devices have been defined and their corresponding values have been provides for the 50 μm and 105 μm multimode fibers. By use of the self-imaging effect, a fiber laser with single-transverse-mode output while using a multimode rare-earth-doped fiber has been demonstrated as an alternative route to overcome the constraints of an active single-mode fiber. The first MMI-based fiber laser in the world has provided a perfect beam quality (M² = 1.01) and an inherent narrow spectrum (Δλ(3dB) < 0.5 nm). Linearly-polarized narrow-linewidth single-transverse-mode emission has also been obtained from a MMI fiber laser utilizing a single-mode fiber inscribed with a polarization-maintaining fiber Bragg grating. Moreover, high power MMI fiber lasers and amplifiers utilizing rare-earth doped silica large-core multimode fibers have been proposed and their critical features, such as efficiency, optical spectrum, and beam quality, have been investigated. On the other hand, because exclusively excited LP₀, n modes inside the multimode fiber segment are represented by apertured Bessel fields that have long propagation invariant distances, nondiffracting beams can be generated from the MMI-based fiber devices. In this thesis, the principle of generating nondiffracting beams from multimode optical fibers has been described and the propagation characteristics of the generated beams have been investigated. Active MMI fiber devices to generate tens of watts or even hundreds of watts nondiffracting beams have also been proposed.
3

Ultrafast pulse dynamics in low noise Tm/Ho doped mode-locked fiber lasers

Akosman, Ahmet Emin 22 October 2018 (has links)
Mode-locked fiber lasers have attracted significant scientific and commercial interest since they offer a compact and highly stable platform with straightforward operation for exploiting ultrafast and nonlinear phenomena. They have enabled a vast range of applications that span from distinct disciplines such as medical diagnostics, molecular spectroscopy, and high-power precise mechanical cutting, to optical metrology. Various gain media have been utilized to achieve laser emission at different wavelengths. We have developed unique thulium/holmium (Tm/Ho) doped mode-locked fiber laser systems to address the needs of low-noise ultrafast optical sources in the wavelength vicinity of 2 μm at higher repetition rates. Since the 2 μm wavelength regime has recently attracted more attention with the emergence of thulium gain fibers, the rich underlying cavity dynamics, novel pulse operation regimes and nonlinear phenomena in compact fiber configurations have not been fully explored yet. In this thesis, research is conducted on novel Tm fiber laser cavity configurations and on the formation of unique, polarization-based pulsing regimes. Particularly, this research is focused on the exploration of novel ultrafast and nonlinear phenomena, and the development of optical sources emitting unprecedented ultrafast pulse trains beyond conventional equal-intensity distribution using Tm/Ho doped gain media. The research presented features four main results: 1) development of a high repetition rate and low-noise Tm/Ho doped mode-locked fiber laser platform as an attractive optical source for a wide variety of applications 2) investigation of a novel mode-locked state in which the ultrafast pulse train is composed of co-generated, consecutive, equal intensity and orthogonally polarized pulses in order to achieve dual RF comb generation for dual-comb spectroscopy applications, 3) exploration of controllable ultrafast waveform generation utilizing vector soliton and harmonic mode-locking mechanisms for optical telecommunication applications, and 4) demonstration of unique transitional mode-locked states showing exceptional features such as powerful irregular bursts of ultrafast pulses and rogue wave behavior without damaging the laser elements. The aim of these projects has been to explore the novel optical properties of Tm/Ho co-doped fiber lasers in order to achieve advanced functionalities in commonly practiced applications such as telecommunication, metrology and spectroscopic applications. / 2019-10-22T00:00:00Z
4

High-Energy YB-Doped Femtosecond Fiber Lasers

Kotb, Hussein January 2015 (has links)
The main objective of the thesis is to understand the parameters that contribute in limiting the pulse energy and spectral bandwidth of the mode-locked femtosecond fiber lasers. I have focused on studying the impact of the parameters of the saturable absorber and the bandwidth of the lumped spectral filter on the temporal and spectral profiles of the pulse. Therefore, I developed two models that can help us to optimize the pulse characteristics such as the pulse energy, spectral bandwidth and de-chirped pulse width. I also introduce two techniques that result in increasing the pulse peak power and spectral bandwidth. The nonlinear transmission coefficient of the saturable absorber is one of the main limitations to achieving high-energy pulses. Throughout my research, I have used two types of saturable absorbers. The first is a lumped semiconductor saturable absorber mirror (SESAM) and the second is based on the nonlinear polarization rotation (NPR) that is considered an artificial saturable absorber with distributed effect. The first model introduced in this thesis is an analytical model, which provides closed form relations for the pulse characteristics of all-normal dispersion fiber laser. It shows how the spectral bandwidth of the lumped filter inserted inside the cavity affects the pulse characteristics. Also, it illustrates the influence of the saturable absorber parameters on the pulse characteristics. I show that increasing the small signal saturable absorber loss and decreasing the saturation power leads to the increase in pulse energy and spectral bandwidth. Numerical simulation and experimental results are in agreement with the results of the analytical models. The second model, which is called the semi-vector model, is applicable to all-normal dispersion mode-locked fiber laser with high output coupling ratio. Nonlinear polarization rotation is employed for mode-locking. The model shows the relationship between the location of the overdriving point of the saturable absorber and the output pulse energy. The results of this model are in agreement with those of the full-vector model, but with a much reduced simulation time. In addition, the experimental results show the accuracy of the proposed model. In this thesis, I mitigate the peak power limitation, caused by the accumulated nonlinear phase shift, by replacing the short high-doped Yb3+ fiber with a long low-doped one. This results in an increase of the peak power by a factor that depends on the ratio between the gain coefficient of the high- and low-doped Yb3+ fiber. The length of the nonlinear section is kept unchanged by reducing the length of the single mode fiber after the long low-doped Yb3+ fiber. Numerical simulation and experimental results validate the idea. The location of narrow bandwidth lumped spectral filter, in an active Similariton laser, has proved to have a distinct effect on the pulse energy, spectral bandwidth and de-chirped pulse width and peak power. The proximity of the spectral filter to the input of the Yb3+-doped fiber leads to increasing the pulse spectral bandwidth and peak power of the de-chirped pulse as well as shortening the de-chirped pulse, but at the expense of reducing the pulse energy.
5

Fiber Random Grating and Its Applications

Xu, Yanping January 2017 (has links)
Femtosecond (fs) laser micromachining has been a useful technique either to modify and remove materials or to change the properties of a material, and can be applied to transparent and absorptive substances. Recently high-power fs laser radiation has drawn intensive attention for the induction of refractive index change to fabricate micro-structures in dielectric materials. This thesis studies the optical properties of a novel fiber random grating fabricated by fs laser micromachining technique and extends its applications from optical sensing to random fiber lasers and optical random bit generations. The thesis mainly consists of three parts. In the first part, the physical mechanism behind the fs laser micromachining technique and the fabrication of the fiber random grating are introduced. By employing a wavelength-division spectral cross-correlation algorithm, a novel multi-parameter fiber-optic sensor based on the fiber random grating is proposed and demonstrated to realize simultaneous measurements of temperature, axial strain, and surrounding refractive index. In the second part, Brillouin random fiber laser (BRFL) and Erbium-doped fiber random laser (EDFRL) are introduced, respectively. Firstly, we propose a novel Brillouin random fiber laser with a narrow linewidth of ~860 Hz based on the bi-directionally pumped stimulated Brillouin scattering (SBS) in a 10-km-long optical fiber. A random fiber Fabry-Perot (FP) resonator is built up through the pump depletion effects of SBS at both ends of the fiber. The novel laser is successfully applied for linewidth characterization beyond 860 Hz of light source under test. Secondly, the random grating-based FP resonator is introduced to build up a novel BRFL with narrow-linewidth of ~45.8Hz and reduced lasing threshold. The intensity and frequency noises of the proposed random laser are effectively suppressed due to the reduced resonating modes and mode competition. Finally, the fiber random grating is used as random distributed feedback in an EDFRL to achieve both static (temperature, strain) and dynamic (ultrasound) parameter sensing. Multiple lasing lines with high signal-to-noise ratio (SNR) up to 40dB are achieved, which gives an access for a high-fidelity multiple-static-parameter sensing application. By monitoring the wavelength shifts of each peak, temperature and strain have been simultaneously measured with small errors. The fiber random grating in the EDFRL is also able to sense the ultrasound waves. By achieving single mode lasing with the EDFRL, ultrasound waves with frequencies from 20kHz to 0.8MHz could be detected with higher sensitivity and SNR improvement up to 20dB compared with conventional piezoelectric acoustic sensors. In the third part, we demonstrate that a semiconductor laser perturbed by the distributed feedback from a fiber random grating can emit light chaotically without the time delay signature (TDS). A theoretical model is developed by modifying the Lang-Kobayashi model to numerically explore the chaotic dynamics of the laser diode subjected to the random distributed feedback. It is predicted that the random distributed feedback is superior to the single reflection feedback in suppressing the TDS. In experiments, The TDS with the maximum suppression is achieved with a value of 0.0088, which is the smallest to date.
6

Investigation of Specialized Laser and Optical Techniques to Improve Precision Atomic Spectroscopy of Helium

Currey, Ronnie 05 1900 (has links)
The aim of this thesis is to develop both Yb and Tm fiber laser sources with all fiber cavities. Both wavelength ranges provide useful laser sources for optical pumping of helium. The goal is to develop Tm laser sources operating at 2058 nm to optically quench 3He (2058.63 nm) and 4He (2058.69 nm) singlets (21S0). We also have developed Yb laser sources at 1083 nm to optical pump the triplet states of helium and laser cool an atomic beam of helium.
7

Realizing a mid-infrared optically pumped molecular gas laser inside hollow-core photonic crystal fiber

Jones, Andrew Michael January 1900 (has links)
Doctor of Philosophy / Department of Physics / Kristan L. Corwin / This research has focused on the development, demonstration, and characterization of a new type of laser based on optically-pumped gases contained within hollow optical fibers. These novel lasers are appealing for a variety of applications including frequency metrology in the mid-infrared, free-space communications and imaging, and defense applications. Furthermore, because of the hollow core fibers used, this technology may provide the means to surpass the theoretical limits of output power available from high power solid-core fiber laser systems. Gas-filled hollow-core fiber lasers based on population inversion from acetylene ([superscript]12C[subscript]2H[subscript]2) and hydrogen cyanide (HCN) gas contained within the core of a kagome-structured hollow-core photonic crystal fiber have now been demonstrated. The gases are optically pumped via first order rotational-vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built optical parametric amplifier. Narrow-band laser emission peaks in the 3-μm region corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped vibrational overtone modes and the fundamental C-H stretching modes have been observed in both molecules. High gain resulting from tight confinement of the pump and laser light together with the active gas permits these lasers to operate in a single pass configuration, without the use of any external resonator structure. Studies of the generated mid-infrared pulse energy, threshold energy, and slope efficiency as functions of the launched pump pulse energy and gas pressure have been performed and show an optimum condition where the maximum laser pulse energy is achieved for a given fiber length. The laser pulse shape and the laser-to-pump pulse delay have been observed to change with varying pump pulse energy and gas pressure, resulting from the necessary population inversion being created in the gases at a specific fiber length dependent on the launched pulse energy. Work is on going to demonstrate the first continuous wave version of the laser which may be used to produce a single coherent output from many mutually incoherent pump sources.
8

Dual-wavelength fiber laser above 2 mu m based on cascaded single mode-multimode-single mode structures

Fu, Shijie, Shi, Guannan, Sheng, Quan, Shi, Wei, Yao, Jianquan, Zhu, Xiushan, Peyghambarian, N. 06 1900 (has links)
A stable dual-wavelength Tm:Ho co-doped fiber laser operating above 2 mu m based on cascaded single mode-multimode-single mode (SMS) all-fiber structures has been proposed and experimentally demonstrated for the first time.
9

SESAM Q-switched fiber laser at 1.2 mu m

Wang, Yuchen, Zhu, Xiushan, Zong, Jie, Wiersma, Kort, Chavez-Pirson, Arturo, Norwood, Robert A., Peyghambarian, N. 06 1900 (has links)
Q-switched operation of a holmium-doped fluoride fiber laser at 1.2 mu m wavelength induced by a semiconductor saturable absorber mirror (SESAM) is reported. 650 ns pulses with 0.13 mu J pulse energy at a repetition rate of 260 kHz were obtained.
10

Power scaling of single-frequency fiber amplifiers at 976 nm

Wu, Jingwei, Zhu, Xiushan, Temyanko, Valery, Valery; LaComb, L., Norwood, R. A., Peyghambarian, N. 06 1900 (has links)
Cladding pumped single-frequency Yb3+-doped fiber amplifiers at 976 nm were investigated. Over 4 W output power was obtained and further power scaling can be achieved by reducing the cladding diameter of the Yb3+-doped fiber.

Page generated in 0.0494 seconds