Return to search

Model-based design of a protection scheme for shipboard power systems

A shipboard power system (SPS) should be stable and reliable in order to ensure that the ship has better fight-through capability and increased fault invulnerability. The protection system is designed to minimize the effects of faults in the SPS, which presents challenges, such as increased fault vulnerability and lack of an electrical ground in the system. If protection devices are not updated after power system reconfiguration, they may not protect the power system appropriately. Therefore the development of elaborate digital protection devices for the SPS is required. This thesis focuses on the model-based methodology for designing a protection scheme for SPS based on instantaneous overcurrent digital relays. To achieve this, an instantaneous overcurrent relay model is first developed in MATLAB/Simulink. Then, the Simulink model is downloaded to the DSP-based platform dSPACE, which runs the Simulink model in real-time, to perform hardware-in-the-loop testing (HIL). Thus, through the dSPACE hardware, the proposed relay model is tested for various fault conditions in three HIL platforms. Different electromagnetic transient real-time digital simulators are used to simulate the SPS, to which protection is provided through the relay modeled in dSPACE. Simulation results from these three HIL platforms demonstrate that the proposed overcurrent relay model was successfully modeled, simulated and tested using various tools for model-based design. Testing results show that the developed model can work with different real-time platforms, and that in contrast to a commercial relay, the developed relay model has increased flexibility because settings such as reclose delay and pickup value can be changed online. This feature can be used to develop an advanced relay model with a dynamic pickup value. An advanced relay model will be useful for the SPS, because such system is subject to topological changes and reconfiguration that are not as prevalent in other types of power systems.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4130
Date13 December 2008
CreatorsZhang, Yujie
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0012 seconds