No presente trabalho iremos provar, usando a folheação de Brouwer-Le Calvez e a teoria de forcing dela derivada, que dado um homeomorfismo f do toro isotópico à identidade tal que seu conjunto de rotação é um segmento de reta com inclinação irracional e tendo 0 como um ponto extremal, então f não possui difusão sublinear na direção perpendicular à direção do conjunto de rotação / In the present work we will prove, using the Brouwer-Le Calvez foliation and the forcing theory derived from it, that given a torus homeomorphism f isotopopic to the identity such that its rotation set is a line segment with irrational slope and 0 is an extreme point, then f does not have sublinear diffusion in the direction perpendicular to the direction of the rotation set.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22032019-175341 |
Date | 30 January 2019 |
Creators | Salomão, Guilherme Silva |
Contributors | Tal, Fabio Armando |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds