Return to search

Determination Of Cuttings Transport Properties Of Gasified Drilling Fluids

The studies conducted on hole cleaning have been started with single phase drilling fluids for vertical holes in 1930&rsquo / s, and have reached to multiphase drilling fluids for directional and horizontal wells today. The influence of flow rate and hole inclination on cuttings transport has been well understood, and many studies have been conducted on effective hole cleaning either experimentally or theoretically. However, neither the hydraulic behavior nor the hole cleaning mechanism of gasified drilling fluids has been properly understood.
The aims of this study are to investigate and analyze the hole cleaning performance of gasified drilling fluids in horizontal, directional and vertical wells experimentally, to identify the drilling parameters those have the major influence on cuttings transport, to define the flow pattern types and boundaries as well as to observe the behavior of cuttings in detail by using digital image processing techniques, and to develop a mechanistic model based on the fundamental principles of physics and mathematics with the help of the experimental observations.
A mechanistic model is developed with the help of the obtained experimental data. Developed model is used for estimating optimum flow rates for liquid and gas phases for effective cuttings transport as well as for determining the total pressure losses and void fraction of each phase for a given drilling conditions. The
v
mechanistic model obtained using the experimental data within the scope of this study will be used to develop the hydraulic program and equipment selection to be used in the field during underbalanced drilling applications.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612676/index.pdf
Date01 November 2010
CreatorsEttehadi Osgouei, Reza
ContributorsMehmetoglu, Tanju
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0019 seconds