Return to search

Existência de uma solução não trivial para uma classe de problemas elípticos super quadrático / Existence of a nontrivial solution for a class of elliptic problems super quadratic

Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-08-29T19:24:13Z
No. of bitstreams: 2
Dissertação Corrigida e Finalisada.pdf: 2280692 bytes, checksum: fa3c7d92b5ed8a39139ceeb3abb80551 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-08-29T19:24:13Z (GMT). No. of bitstreams: 2
Dissertação Corrigida e Finalisada.pdf: 2280692 bytes, checksum: fa3c7d92b5ed8a39139ceeb3abb80551 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-12-13 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this dissertation we analyze questions of existence of a weak solution for a class
of superlineares elliptic Dirichlet problems. Here we do not consider the Ambrosseti
Rabinovitz condition , which restricts some nonlinearities. We obtain main results of
this dissertation via Variational Methods, such as Mountain Pass Theorem and Linking
Theorem. Furthermore, weusePalais-Smalecondition(P.S.) or Cerami condition(Ce) / Nesta dissertação analisamos questões de existência de uma solução fraca para uma classe de problemas de Dirichlet elípticos superlineares. Aqui não consideramos a condição deAmbrosetti-Rabinowitz,a qual restringealgumasfunçõesnão lineares. Obtemos os principais resultados desta dissertação via Métodos variacionais, tais como o Teorema do Passo da Montanha e um Teorema de Linking. Além disso, utilizamos a
TeoriaEspectral e ascondições dePalais-Smale(P.S.) eCerami(Ce).

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2968
Date13 December 2013
CreatorsCavalcante, Thiago Rodrigues
ContributorsSilva, Edcarlos Domingos da, Silva, Edcarlos Domingos da, Cardoso, José Anderson Valença, Carvalho, Marcos Leandro Mendes
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation6600717948137941247, 600, 600, 600, 600, -4268777512335152015, 8398970785179857790, -2555911436985713659, [1] AGMON, S; DOUGLIS, A; NIRENBERG, L. Estimatives near the boundary for solutionsofellipticp.d.e.satisfyingageneralboundaryvalueconditioni. Comm. Pure Appl. Math., 12:623–727, 1959. [2] AMBROSETTI,A;ARCOYA,D.AnIntroductiontoNonlinearFunctionalAnalysis and Elliptic Problems. Birkhäuser, 2012. [3] AMBROSETTI, A; MALCHIODI, A. Nonlinear analysis and semilinear elliptic problems. Cambridge University Press, Cambridge, 2007. [4] BREZIS, H. FunctionalAnalysis,SobolevSpacesandPartialDifferentialEquantions. Springer, 2010. [5] COSTA, D. G; MAGALHÃES, C. A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. TMA., 23:1401–1412, 1994. [6] COSTA, D. G; MIYAGAKI, O. H. Nontrivial solutions for pertubations of the plaplacian on unbounded domains. J. Math. Anal. Appl., 193:737–755, 1995. [7] DE BARROS E SILVA, E. A. Linking theorems and applications to semilinear elliptic problemsat resonance. Nonlinear Analysis, 16:455–477, 1991. [8] DE FIGUEIREDO, D. G. Positive solutions of semilinear elliptic problems. Springer, Berlin-New York, 1982. [9] DRABEK, P. On the resonance problem with nonlinearity which has arbitrary linear growth. J. Math. Anal. Appl., 127:435–442, 1987. [10] FAN, X.-L; ZHAO, Y.-Z. Linking and multiplicity results for the p-laplacian on unboundedcylinders. Mathematical Analysis and Applications, 260:479–489, 2001. [11] FURTADO, M. F. Notasde Aulade EDP 2. Universidade de Brasília, Brasília. [12] GILBARG, D; TRUDINGER, N. EllipticPartialDifferentialEquantionsofSecond Order. Springer, Berlin-New York, 1998. [13] ISNARD, C. IntroduçãoàMedidaeIntegração. IMPA, Rio de Janeiro, 2009. [14] JIANG, Q; TANG, C.-L. Existenceofanontrivialsolutionforaclassofsuperquadraticellipticproblems. Nonlinear Analysis, 69:523–529, 2008. [15] JIU, Q; SU, J. Existence and multiplicity results for dirichlet problems with plaplacian. Math. Anal. Appl., 281:587–601, 2003. [16] JR., J. A boundary value problem with a periodic nonlinearity. Nonlinear Analysis TMA., 10:207–213, 1986. [17] KREYSIG,E.IntroductoryFunctionalAnalysiswithApplications. WileyClassics Library, Canadá, 1978. [18] LI, G; WANG, C. The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the ambrosetti–rabinowitz condition. Annales Academiae Scientiarum Fennicae, 36:461–480, 2011. [19] LI, S; WILLEM, M. Applications of local linking to critical points theory. JMAA, 189:6–32, 1995. [21] OU, Z.-Q; TANG, C.-L. Existence of homoclinic solution for the second order hamiltoniansystems. Math. Anal. Appl., 291:203–213, 2004. [22] OU, Z.-Q; TANG, C.-L. Periodic and subharmonic solutions for a class of superquadratichamiltoniansystems. Nonlinear Analysis, 58:245–258, 2004. [23] P.H.RABINOWITZ. Periodicsolutionsofhamiltoniansystems. Comm. Pure Appl. Math., 31:157–184, 19978. [24] SCHECHTER, M. Superlinear elliptic boundary value problems. Manuscripta Math., 86:253–265, 1995. [25] SMOLLER, J. Shock waves and reaction-diffusion equations. Springer-Verlag, New York, 1994. [26] WILLEM, M. MinimaxTheorems. Birkhauser Boston, Inc., Boston, 1996. [27] WU, X.-P; TANG, C.-L. Remarks on existence and multiplicity of solutions for a classofsemilinearellipticequations. JMAA, 319:369–376, 2006. [28] XIUMING MO, PING JING, Y. Z; MAO, A. Existence of a nontrivial solution for a classofsuperquadraticellipticproblems. Advances in Pure Mathematics, 2:314– 317, 2012.

Page generated in 0.0028 seconds