Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-04T21:17:17Z (GMT). No. of bitstreams: 1
Diniz_HugoAlexCarneiro_D.pdf: 770650 bytes, checksum: 55f077fc4cf6042e72a4b852d549e423 (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho estudamos a unicidade e a não-degenerescência de soluções positi-vas radiais para problemas não-autônomos envolvendo o p-Iaplaciano em anéis e bolas, com condição de Neumann na parte interna do anel, e condição de Dirichlet na parte externa. Quando o domínio é uma bola, temos apenas a condição de Dirichlet. Consideraremos três perfis diferentes para o problema: sublinear, superlinear e positivo, superlinear com parte negativa. Utilizando a técnica de Coffman, a qual consiste em estudar os zeros da solu-ção do problema linearizado, através de argumentos de comparação de Sturm, provamos primeiramente a não-degenerescência. Pelo método de "shooting", obtemos a unicidade. Como aplicação, demonstramos um resultado de unicidade para o laplaciano em domínios não-simétricos (até mesmo não-convexos) "próximos" a uma bola / Abstract: In this work, we study uniqueness and non-degeneracy of positive radial solutions for non-autonomous problems involving p-Iaplacian in annuli and balls, with Neumann condition in the inner part of annulus, and Dirichlet condition in the outer part. We consider three different problems: sublinear, superlinear and positive, superlinear with a negative part. Using the Coffman's technique, which consists in studying the zeros of the solution of the linearized problem, through Sturm comparison arguments we prove non-degeneracy. By the "shooting" method, we prove uniqueness. As an application, we demonstrate a uniqueness result for laplacian in non-symmetric (even non-convex) domains ''near'' a baIl / Doutorado / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306975 |
Date | 23 August 2005 |
Creators | Diniz, Hugo Alex Carneiro |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Figueiredo, Djairo Guedes de, 1934-, Lopes, Orlando Francisco, O, Joao Marcos Bezerra do, Lopez, Pedro Eduardo Ubilla, Miyagaki, Olimpio Hiroshi |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Inglês |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 117p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds